skip to main content


Title: A conceptual view on inertial internal waves in relation to the subinertial flow on the central west Florida shelf
Abstract

The study reported here focuses on inertial internal wave currents on the west Florida midshelf in 50 m depth.In situobservations showed that the seasonal shifts in stratification change both the frequency range of inertial internal waves and their modulation time scales. According to the analysis, the subinertial flow evolution time scales also undergo compatible seasonal variations, and the inertial internal wave currents appear to be temporally and spatially related to the subinertial flow. Specifically, the subinertial flow evolving on frontal-/quasi-geostrophic time scales appears to be accompanied by the near-inertial oscillations/inertia-gravity waves in corresponding small/finite Burger number regimes, respectively. The quasi-geostrophic subinertial currents on the west Florida shelf are probably associated with the synoptic wind-forced flow, whereas the frontal-geostrophic currents are related to the evolution of density fronts. Further details of this conceptual view should, however, be elucidated in the future.

 
more » « less
NSF-PAR ID:
10153235
Author(s) / Creator(s):
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study stimulated generation – the transfer of energy from balanced flows to existing internal waves – using an asymptotic model that couples barotropic quasi-geostrophic flow and near-inertial waves with $\text{e}^{\text{i}mz}$ vertical structure, where $m$ is the vertical wavenumber and $z$ is the vertical coordinate. A detailed description of the conservation laws of this vertical-plane-wave model illuminates the mechanism of stimulated generation associated with vertical vorticity and lateral strain. There are two sources of wave potential energy, and corresponding sinks of balanced kinetic energy: the refractive convergence of wave action density into anti-cyclones (and divergence from cyclones); and the enhancement of wave-field gradients by geostrophic straining. We quantify these energy transfers and describe the phenomenology of stimulated generation using numerical solutions of an initially uniform inertial oscillation interacting with mature freely evolving two-dimensional turbulence. In all solutions, stimulated generation co-exists with a transfer of balanced kinetic energy to large scales via vortex merging. Also, geostrophic straining accounts for most of the generation of wave potential energy, representing a sink of 10 %–20 % of the initial balanced kinetic energy. However, refraction is fundamental because it creates the initial eddy-scale lateral gradients in the near-inertial field that are then enhanced by advection. In these quasi-inviscid solutions, wave dispersion is the only mechanism that upsets stimulated generation: with a barotropic balanced flow, lateral straining enhances the wave group velocity, so that waves accelerate and rapidly escape from straining regions. This wave escape prevents wave energy from cascading to dissipative scales. 
    more » « less
  2. While the distribution of kinetic energy across spatial scales in the submesoscale range (1–100 km) has been estimated from observations, the associated time scales are largely unconstrained. These time scales can provide important insight into the dynamics of submesoscale turbulence because they help quantify to what degree the flow is subinertial and thus constrained by Earth’s rotation. Here a mooring array is used to estimate these time scales in the northeast Atlantic. Frequency-resolved structure functions indicate that energetic wintertime submesoscale turbulence at spatial scales around 10 km evolves on time scales of about 1 day. While these time scales are comparable to the inertial period, the observed flow also displays characteristics of subinertial flow that is geostrophically balanced to leading order. An approximate Helmholtz decomposition shows the order 10-km flow to be dominated by its rotational component, and the root-mean-square Rossby number at these scales is estimated to be 0.3. This rotational dominance and Rossby numbers below one persist down to 2.6 km, the smallest spatial scale accessible by the mooring array, despite substantially superinertial Eulerian evolution. This indicates that the Lagrangian evolution of submesoscale turbulence is slower than the Eulerian time scale estimated from the moorings. The observations therefore suggest that, on average, submesoscale turbulence largely follows subinertial dynamics in the 1–100-km range, even if Doppler shifting produces superinertial Eulerian evolution. Ageostrophic motions become increasingly important for the evolution of submesoscale turbulence as the scale is reduced—the root-mean-square Rossby number reaches 0.5 at a spatial scale of 2.6 km.

     
    more » « less
  3. Abstract

    Fronts and near-inertial waves (NIWs) are energetic motions in the upper ocean that have been shown to interact and provide a route for kinetic energy (KE) dissipation of balanced oceanic flows. In this paper, we study these KE exchanges using an idealized model consisting of a two-dimensional geostrophically balanced front undergoing strain-induced semigeostrophic frontogenesis and internal wave (IW) vertical modes. The front–IW KE exchanges are quantified separately during two frontogenetic stages: an exponential sharpening stage that is characterized by a low Rossby number and is driven by the imposed strain (i.e., mesoscale frontogenesis), followed by a superexponential sharpening stage that is characterized by anRossby number and is driven by the convergence of the secondary circulation (i.e., submesoscale frontogenesis). It is demonstrated that high-frequency IWs quickly escape the frontal zone and are very efficient at extracting KE from the imposed geostrophic strain field through the deformation shear production (DSP). Part of the extracted KE is then converted to wave potential energy. On the contrary, NIWs remain locked to the frontal zone and readily exchange energy with the ageostrophic frontal circulation. During the exponential stage, NIWs extract KE from the geostrophic strain through DSP and transfer it to the frontal secondary circulation via the ageostrophic shear production (AGSP) mechanism. During the superexponential stage, a newly identified mechanism, convergence production (CP), plays an important role in the NIW KE budget. The CP transfers KE from the convergent ageostrophic secondary circulation to the NIWs and largely cancels out the KE loss due to the AGSP. This CP may explain previous findings of KE transfer enhancement from balanced motions to IWs in frontal regions of realistic ocean models. We provide analytical estimates for the aforementioned energy exchange mechanisms that match well the numerical results. This highlights that the strength of the exchanges strongly depends on the frontal Rossby and Richardson numbers.

    Significance Statement

    Fronts with large horizontal density and velocity gradients are ubiquitous in the upper ocean. They are generated by a process known as frontogenesis, which is often initialized by straining motions of mesoscale balanced circulations. Here we examine the energy exchanges between fronts and internal waves in an idealized configuration, aiming to elucidate the mechanisms that can drain energy from oceanic balanced circulations. We identify a new mechanism for energy transfers from the frontal circulation to near-inertial internal waves called convergence production. This mechanism is especially effective during the later stages of frontogenesis when the convergent ageostrophic secondary circulation that develops is strong.

     
    more » « less
  4. null (Ed.)
    The energetically independent linear wave and geostrophic (vortex) solutions are shown to be a complete basis for velocity and density variables $(u,v,w,\rho )$ in a rotating non-hydrostatic Boussinesq fluid with arbitrary stratification and non-periodic vertical boundaries. This work extends the familiar wave-vortex decomposition for triply periodic domains with constant stratification. As a consequence of the decomposition, the fluid can be unambiguously separated into decoupled linear wave and geostrophic components at each instant in time, without the need for temporal filtering. The fluid can then be diagnosed for temporal changes in wave and geostrophic coefficients at each unique wavenumber and mode, including those that inevitably occur due to nonlinear interactions. We demonstrate that this methodology can be used to determine which physical interactions cause the transfer of energy between modes by projecting the nonlinear equations of motion onto the wave-vortex basis. In the particular example given, we show that an eddy in geostrophic balance superimposed with inertial oscillations at the surface transfers energy from the inertial oscillations to internal gravity wave modes. This approach can be applied more generally to determine which mechanisms are involved in energy transfers between wave and vortices, including their respective scales. Finally, we show that the nonlinear equations of motion expressed in a wave-vortex basis are computationally efficient for certain problems. In cases where stratification profiles vary strongly with depth, this approach may be an attractive alternative to traditional spectral models for rotating Boussinesq flow. 
    more » « less
  5. Abstract

    Submesoscale currents and internal gravity waves achieve an intense turbulent cascade near the ocean surface [depth of 0–O(100) m], which is thought to give rise to significant energy sources and sinks for mesoscale eddies. Here, we characterize the contributions of nonwave currents (NWCs; including eddies and fronts) and internal gravity waves (IGWs; including near-inertial motions, lee waves, and the internal wave continuum) to near-surface submesoscale turbulence in the Drake Passage. Using a numerical simulation, we combine Lagrangian filtering and a Helmholtz decomposition to identify NWCs and IGWs and to characterize their dynamics (rotational versus divergent). We show that NWCs and IGWs contribute in different proportions to the inverse and forward turbulent kinetic energy cascades, based on their dynamics and spatiotemporal scales. Purely rotational NWCs cause most of the inverse cascade, while coupled rotational–divergent components of NWCs and coupled NWC–IGWs cause the forward cascade. The cascade changes direction at a spatial scale at which motions become increasingly divergent. However, the forward cascade is ultimately limited by the motions’ spatiotemporal scales. The bulk of the forward cascade (80%–95%) is caused by NWCs and IGWs of small spatiotemporal scales (L< 10 km;T< 6 h), which are primarily rotational: submesoscale eddies, fronts, and the internal wave continuum. These motions also cause a significant part of the inverse cascade (30%). Our results highlight the requirement for high spatiotemporal resolutions to diagnose the properties and large-scale impacts of near-surface submesoscale turbulence accurately, with significant implications for ocean energy cycle study strategies.

     
    more » « less