skip to main content


Title: Enhancement in surface mobility and quantum transport of Bi2−xSbxTe3−ySey topological insulator by controlling the crystal growth conditions
Abstract

Despite numerous studies on three-dimensional topological insulators (3D TIs), the controlled growth of high quality (bulk-insulating and high mobility) TIs remains a challenging subject. This study investigates the role of growth methods on the synthesis of single crystal stoichiometric BiSbTeSe2(BSTS). Three types of BSTS samples are prepared using three different methods, namely melting growth (MG), Bridgman growth (BG) and two-step melting-Bridgman growth (MBG). Our results show that the crystal quality of the BSTS depend strongly on the growth method. Crystal structure and composition analyses suggest a better homogeneity and highly-ordered crystal structure in BSTS grown by MBG method. This correlates well to sample electrical transport properties, where a substantial improvement in surface mobility is observed in MBG BSTS devices. The enhancement in crystal quality and mobility allow the observation of well-developed quantum Hall effect at low magnetic field.

 
more » « less
NSF-PAR ID:
10153256
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Room temperature semiconductor detector (RTSD) materials for γ‐ray and X‐ray radiation are in great demand for the nonproliferation of nuclear materials as well as for biomedical imaging applications. Halide perovskites have attracted great attention as emerging and promising RTSD materials. In this contribution, the material synthesis, purification, crystal growth, crystal structure, photoluminescence properties, ionizing radiation detection performance, and electronic structure of the inorganic halide perovskitoid compound TlPbI3are reported on. This compound crystallizes in the ABX3non‐perovskite crystal structure with a high density ofd = 6.488 g·cm–3, has a wide bandgap of 2.25 eV, and melts congruently at a low temperature of 360 °C without phase transitions, which allows for facile growth of high quality crystals with few thermally‐activated defects. High‐quality TlPbI3single crystals of centimeter‐size are grown using the vertical Bridgman method using purified raw materials. A high electrical resistivity of ≈1012 Ω·cm is readily obtainable, and detectors made of TlPbI3single crystals are highly photoresponsive to Ag KαX‐rays (22.4 keV), and detects 122 keV γ‐rays from57Co radiation source. The electron mobility‐lifetime productµeτewas estimated at 1.8 × 10–5cm2·V–1. A high relative static dielectric constant of 35.0 indicates strong capability in screening carrier scattering and charged defects in TlPbI3.

     
    more » « less
  2. Abstract

    The dearth of suitable materials significantly restricts the practical development of infrared (IR) laser systems with highly efficient and broadband tuning. Recently, γ‐NaAsSe2is reported, and it exhibits a large nonlinear second‐harmonic generation (SHG) coefficient of 590 pm V−1at 2 µm. However, the crystal growth of γ‐NaAsSe2is challenging because it undergoes a phase transition to centrosymmetric δ‐NaAsSe2. Herein, the stabilization of non‐centrosymmetric γ‐NaAsSe2by doping the As site with Sb, which results in γ‐NaAs0.95Sb0.05Se2is reported. The congruent melting behavior is confirmed by differential thermal analysis with a melting temperature of 450 °C and crystallization temperature of 415 °C. Single crystals with dimensions of 3 mm × 2 mm are successfully obtained via zone refining and the Bridgman method. The purification of the material plays a significant role in crystal growth and results in a bandgap of 1.78 eV and thermal conductivity of 0.79 Wm−1K−1. The single‐crystal SHG coefficient of γ‐NaAs0.95Sb0.05Se2exhibits an enormous value of |d11| = 648 ± 74 pm V−1, which is comparable to that of γ‐NaAsSe2and ≈20× larger than that of AgGaSe2. The bandgap of γ‐NaAs0.95Sb0.05Se2(1.78 eV) is similar to that of AgGaSe2, thus rendering it highly attractive as a high‐performing nonlinear optical material.

     
    more » « less
  3. Abstract

    The development of in situ growth methods for the fabrication of high‐quality perovskite single‐crystal thin films (SCTFs) directly on hole‐transport layers (HTLs) to boost the performance of optoelectronic devices is critically important. However, the fabrication of large‐area high‐quality SCTFs with thin thickness still remains a significant challenge due to the elusive growth mechanism of this process. In this work, the influence of three key factors on in situ growth of high‐quality large‐size MAPbBr3SCTFs on HTLs is investigated. An optimal “sweet spot” is determined: low interface energy between the precursor solution and substrate, a slow heating rate, and a moderate precursor solution concentration. As a result, the as‐obtained perovskite SCTFs with a thickness of 540 nm achieve a record area to thickness ratio of 1.94 × 104 mm, a record X‐ray diffraction peak full width at half maximum of 0.017°, and an ultralong carrier lifetime of 1552 ns. These characteristics enable the as‐obtained perovskite SCTFs to exhibit a record carrier mobility of 141 cm2V−1s−1and good long‐term structural stability over 360 days.

     
    more » « less
  4. Abstract

    Cs2SnI6perovskite displays excellent air stability and a high absorption coefficient, promising for photovoltaic and optoelectronic applications. However, Cs2SnI6‐based device performance is still low as a result of lacking optimized synthesis approaches to obtain high quality Cs2SnI6crystals. Here, a new simple method to synthesize single crystalline Cs2SnI6perovskite at a liquid–liquid interface is reported. By controlling solvent conditions and Cs2SnI6supersaturation at the liquid–liquid interface, Cs2SnI6crystals can be obtained from 3D to 2D growth with controlled geometries such as octahedron, pyramid, hexagon, and triangular nanosheets. The formation mechanisms and kinetics of complex shapes/geometries of high quality Cs2SnI6crystals are investigated. Freestanding single crystalline 2D nanosheets can be fabricated as thin as 25 nm, and the lateral size can be controlled up to sub‐millimeter regime. Electronic property of the high quality Cs2SnI62D nanosheets is also characterized, featuring a n‐type conduction with a high carrier mobility of 35 cm2V−1s−1. The interfacial reaction‐controlled synthesis of high‐quality crystals and mechanistic understanding of the crystal growth allow to realize rational design of materials, and the manipulation of crystal growth can be beneficial to achieve desired properties for potential functional applications.

     
    more » « less
  5. Abstract

    The wide‐bandgap, semiconducting ternary compound Hg3Se2I2has shown promise as room‐temperature hard‐radiation detector. Since this compound was first reported, there has been significant improvement in crystal growth using a chemical vapor transport method with a polyethylene growth agent. To study the effects of this additional precursor on crystal quality, the nature of radiative and nonradiative defects using photoluminescence (PL) and photocurrent (PC) studies of Hg3Se2I2single crystals are investigated. In contrast to earlier studies, excitation intensity‐dependence of PL emission shows that the near‐band‐edge (NBE) emission bands are all excitonic in nature. The PL intensity decreases with increasing temperature, with the higher energy peaks quenching by 40 K and the deeper levels quenched after 110 K. The PC spectra show a complex structure at room temperature related to NBE transitions in the band structure, while at low temperature only the direct gap transition is observed due to phonons freezing out. The PC spectra at low temperature also indicate several midgap levels that are attributed to native defects within the bulk crystal. These results indicate that the high quality of Hg3Se2I2single crystals is maintained when the transport agent is used during growth, although there are still a variety of defects present.

     
    more » « less