skip to main content

Title: Sequential, but not Concurrent, Incubation of Cathepsin K and L with Type I Collagen Results in Extended Proteolysis
Abstract

Degradation of extracellular matrix (ECM) during tendinopathy is, in part, mediated by the collagenolytic cathepsin K (catK) and cathepsin L (catL), with a temporal component to their activity. The objective of this study was to determine how catK and catL act in concert or in conflict to degrade collagen and tendon ECM during tissue degeneration. To do so, type I collagen gels or ECM extracted from apolipoprotein E deficient mouse Achilles tendons were incubated with catK and catL either concurrently or sequentially, incubating catK first, then catL after a delayed time period. Sequential incubation of catK then catL caused greater degradation of substrates over concurrent incubation, and of either cathepsin alone. Zymography showed there were reduced amounts of active enzymes when co-incubated, indicating that cannibalism, or protease-on-protease degradation between catK and catL was occurring, but incubation with ECM could distract from these interactions. CatK alone was sufficient to quickly degrade tendon ECM, but catL was not, requiring the presence of catK for degradation. Together, these data identify cooperative and conflicting actions of cathepsin mediated collagen matrix degradation by considering interactive effects of multiple proteases during tissue degeneration.

Authors:
; ; ; ;
Publication Date:
NSF-PAR ID:
10153278
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective

    To elucidate the role of decorin, a small leucine‐rich proteoglycan, in the degradation of cartilage matrix during the progression of post‐traumatic osteoarthritis (OA).

    Methods

    Three‐month–old decorin‐null (Dcn−/−) and inducible decorin‐knockout (DcniKO) mice were subjected to surgical destabilization of the medial meniscus (DMM) to induce post‐traumaticOA. TheOAphenotype that resulted was evaluated by assessing joint morphology and sulfated glycosaminoglycan (sGAG) staining via histological analysis (n = 6 mice per group), surface collagen fibril nanostructure via scanning electron microscopy (n = 4 mice per group), tissue modulus via atomic force microscopy–nanoindentation (n = 5 or more mice per group) and subchondral bone structure via micro–computed tomography (n = 5 mice per group). Femoral head cartilage explants from wild‐type and Dcn−/−mice were stimulated with the inflammatory cytokine interleukin‐1β (IL‐1β) in vitro (n = 6 mice per group). The resulting chondrocyte response toIL‐1β and release ofsGAGs were quantified.

    Results

    In both Dcn−/−and DcniKOmice, the absence of decorin resulted in acceleratedsGAGloss and formation of highly aligned collagen fibrils on the cartilage surface relative to the control (P< 0.05). Also, Dcn−/−mice developed more salient osteophytes, illustrating more severeOA. In cartilage explants treated withIL‐1β, loss of decorinmore »did not alter the expression of either anabolic or catabolic genes. However, a greater proportion ofsGAGs was released to the media from Dcn−/−mouse explants, in both live and devitalized conditions (P< 0.05).

    Conclusion

    In post‐traumaticOA, decorin delays the loss of fragmented aggrecan and fibrillation of cartilage surface, and thus, plays a protective role in ameliorating cartilage degeneration.

    « less
  2. Abstract

    The extracellular matrix (ECM) is the primary biomechanical environment that interacts with tendon cells (tenocytes). Stresses applied via muscle contraction during skeletal movement transfer across structural hierarchies to the tenocyte nucleus in native uninjured tendons. Alterations to ECM structural and mechanical properties due to mechanical loading and tissue healing may affect this multiscale strain transfer and stress transmission through the ECM. This study explores the interface between dynamic loading and tendon healing across multiple length scales using living tendon explants. Results show that macroscale mechanical and structural properties are inferior following high magnitude dynamic loading (fatigue) in uninjured living tendon and that these effects propagate to the microscale. Although similar macroscale mechanical effects of dynamic loading are present in healing tendon compared to uninjured tendon, the microscale properties differed greatly during early healing. Regression analysis identified several variables (collagen and nuclear disorganization, cellularity, and F-actin) that directly predict nuclear deformation under loading. Finite element modeling predicted deficits in ECM stress transmission following fatigue loading and during healing. Together, this work identifies the multiscale response of tendon to dynamic loading and healing, and provides new insight into microenvironmental features that tenocytes may experience following injury and after cell delivery therapies.

  3. Abstract

    Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient's existing tissue. The goal of this study was to create a scaffold that would induce site‐specific osteogenic and chondrogenic differentiation of human adipose‐derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using 3D‐bioplotting of biodegradable polycraprolactone (PCL) with either β‐tricalcium phosphate (TCP) or decellularized bovine cartilage extracellular matrix (dECM) to drive site‐specific hASC osteogenesis and chondrogenesis, respectively. PCL‐dECM scaffolds demonstrated elevated matrix deposition and organization in scaffolds seeded with hASC as well as a reduction in collagen I gene expression. 3D‐bioplotted PCL scaffolds with 20% TCP demonstrated elevated calcium deposition, endogenous alkaline phosphatase activity, and osteopontin gene expression. Osteochondral scaffolds comprised of hASC‐seeded 3D‐bioplotted PCL‐TCP, electrospun PCL, and 3D‐bioplotted PCL‐dECM phases were evaluated and demonstrated site‐specific osteochondral tissue characteristics. This technique holds great promise as cartilage morbidity is minimized since autologousmore »cartilage harvest is not required, tissue rejection is minimized via use of an abundant and accessible source of autologous stem cells, and biofabrication techniques allow for a precise, customizable methodology to rapidly produce the scaffold.

    « less
  4. ABSTRACT

    The temporomandibular joint disk (TMJd) is an extremely dense and avascular fibrocartilaginous extracellular matrix (ECM) resulting in a limited regenerative capacity. The use of decellularized TMJdas a biocompatible scaffold to guide tissue regeneration is restricted by innate subcellular porosity of the ECM that hinders cellular infiltration and regenerative events. Incorporation of an artificial microporosity through laser micro‐ablation (LMA) can alleviate these cell and diffusion based limitations. In this study, LMA was performed either before or after decellularization to assess to effect of surfactant treatment on porosity modification as well as the resultant mechanical and physical scaffold properties. Under convective flow or agitation schemes, pristine and laser ablated disks were decellularized using either low (0.1% w/v) or high (1% w/v) concentrations of sodium dodecyl sulfate (SDS). Results show that lower concentrations of SDS minimized collagen degradation and tissue swelling while retaining its capacity to solubilize cellular content. Regardless of processing scheme, laser ablated channels incorporated after SDS treatment were relatively smaller and more uniform than those incorporated before SDS treatment, indicating an altered laser interaction with surfactant treated tissues. Smaller channels correlated with less disruption of native biomechanical properties indicating surfactant pre‐treatment is an important consideration when using LMA tomore »produce artificial porosity inex vivoderived tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1858–1868, 2018.

    « less
  5. Abstract

    While it is well known that mechanical signals can either promote or disrupt intervertebral disc (IVD) homeostasis, the molecular mechanisms for transducing mechanical stimuli are not fully understood. The transient receptor potential vanilloid 4 (TRPV4) ion channel activated in isolated IVD cells initiates extracellular matrix (ECM) gene expression, while TRPV4 ablation reduces cytokine production in response to circumferential stretching. However, the role of TRPV4 on ECM maintenance during tissue‐level mechanical loading remains unknown. Using an organ culture model, we modulated TRPV4 function over both short‐ (hours) and long‐term (days) and evaluated the IVDs' response. Activating TRPV4 with the agonist GSK101 resulted in a Ca2+flux propagating across the cells within the IVD. Nuclear factor (NF)‐κB signaling in the IVD peaked at 6 h following TRPV4 activation that subsequently resulted in higher interleukin (IL)‐6 production at 7 days. These cellular responses were concomitant with the accumulation of glycosaminoglycans and increased hydration in the nucleus pulposus that culminated in higher stiffness of the IVD. Sustained compressive loading of the IVD resulted in elevated NF‐κB activity, IL‐6 and vascular endothelial growth factor A (VEGFA) production, and degenerative changes to the ECM. TRPV4 inhibition using GSK205 during loading mitigated the changes in inflammatory cytokines, protected againstmore »IVD degeneration, but could not prevent ECM disorganization due to mechanical damage in the annulus fibrosus. These results indicate TRPV4 plays an important role in both short‐ and long‐term adaptations of the IVD to mechanical loading. The modulation of TRPV4 may be a possible therapeutic for preventing load‐induced IVD degeneration.

    « less