Two-dimensional (2D) Dirac states with linear dispersion have been observed in graphene and on the surface of topological insulators. 2D Dirac states discovered so far are exclusively pinned at high-symmetry points of the Brillouin zone, for example, surface Dirac states at
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit one-dimensional (1D) higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an
- Award ID(s):
- 1643312
- PAR ID:
- 10153304
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract in topological insulators Bi2Se(Te)3and Dirac cones at$$\overline{{{\Gamma }}}$$ K and points in graphene. The low-energy dispersion of those Dirac states are isotropic due to the constraints of crystal symmetries. In this work, we report the observation of novel 2D Dirac states in antimony atomic layers with phosphorene structure. The Dirac states in the antimony films are located at generic momentum points. This unpinned nature enables versatile ways such as lattice strains to control the locations of the Dirac points in momentum space. In addition, dispersions around the unpinned Dirac points are highly anisotropic due to the reduced symmetry of generic momentum points. The exotic properties of unpinned Dirac states make antimony atomic layers a new type of 2D Dirac semimetals that are distinct from graphene.$$K^{\prime}$$ -
Abstract We report a transport study on Pd3In7which displays multiple Dirac type-II nodes in its electronic dispersion. Pd3In7is characterized by low residual resistivities and high mobilities, which are consistent with Dirac-like quasiparticles. For an applied magnetic field (
μ 0H ) having a non-zero component along the electrical current, we find a large, positive, and linear inμ 0H longitudinal magnetoresistivity (LMR). The sign of the LMR and its linear dependence deviate from the behavior reported for the chiral-anomaly-driven LMR in Weyl semimetals. Interestingly, such anomalous LMR is consistent with predictions for the role of the anomaly in type-II Weyl semimetals. In contrast, the transverse or conventional magnetoresistivity (CMR for electric fieldsE ⊥μ 0H ) is large and positive, increasing by 103−104% as a function ofμ 0H while following an anomalous, angle-dependent power law with$${\rho }_{{{{\rm{xx}}}}}\propto {({\mu }_{0}H)}^{n}$$ n (θ ) ≤ 1. The order of magnitude of the CMR, and its anomalous power-law, is explained in terms of uncompensated electron and hole-like Fermi surfaces characterized by anisotropic carrier scattering likely due to the lack of Lorentz invariance. -
Abstract Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal- (
-) invariant (helical) 3D TCIs—termed higher-order TCIs (HOTIs)—the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), “spin-Weyl” semimetals, and$${{{{{{{\mathcal{T}}}}}}}}$$ -doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate that$${{{{{{{\mathcal{T}}}}}}}}$$ β -MoTe2realizes a spin-Weyl state and thatα -BiBr hosts both 3D QSHI and T-DAXI regimes. -
Abstract We introduce a family of Finsler metrics, called the
-Fisher–Rao metrics$$L^p$$ , for$$F_p$$ , which generalizes the classical Fisher–Rao metric$$p\in (1,\infty )$$ , both on the space of densities$$F_2$$ and probability densities$${\text {Dens}}_+(M)$$ . We then study their relations to the Amari–C̆encov$${\text {Prob}}(M)$$ -connections$$\alpha $$ from information geometry: on$$\nabla ^{(\alpha )}$$ , the geodesic equations of$${\text {Dens}}_+(M)$$ and$$F_p$$ coincide, for$$\nabla ^{(\alpha )}$$ . Both are pullbacks of canonical constructions on$$p = 2/(1-\alpha )$$ , in which geodesics are simply straight lines. In particular, this gives a new variational interpretation of$$L^p(M)$$ -geodesics as being energy minimizing curves. On$$\alpha $$ , the$${\text {Prob}}(M)$$ and$$F_p$$ geodesics can still be thought as pullbacks of natural operations on the unit sphere in$$\nabla ^{(\alpha )}$$ , but in this case they no longer coincide unless$$L^p(M)$$ . Using this transformation, we solve the geodesic equation of the$$p=2$$ -connection by showing that the geodesic are pullbacks of projections of straight lines onto the unit sphere, and they always cease to exists after finite time when they leave the positive part of the sphere. This unveils the geometric structure of solutions to the generalized Proudman–Johnson equations, and generalizes them to higher dimensions. In addition, we calculate the associate tensors of$$\alpha $$ , and study their relation to$$F_p$$ .$$\nabla ^{(\alpha )}$$ -
Abstract We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble
for$$\hbox {CLE}_{\kappa '}$$ in (4, 8) that is drawn on an independent$$\kappa '$$ -LQG surface for$$\gamma $$ . The results are similar in flavor to the ones from our companion paper dealing with$$\gamma ^2=16/\kappa '$$ for$$\hbox {CLE}_{\kappa }$$ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\kappa $$ in terms of stable growth-fragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “$$\hbox {CLE}_{\kappa '}$$ CLE Percolations ” described the law of interfaces obtained when coloring the loops of a independently into two colors with respective probabilities$$\hbox {CLE}_{\kappa '}$$ p and . This description was complete up to one missing parameter$$1-p$$ . The results of the present paper about CLE on LQG allow us to determine its value in terms of$$\rho $$ p and . It shows in particular that$$\kappa '$$ and$$\hbox {CLE}_{\kappa '}$$ are related via a continuum analog of the Edwards-Sokal coupling between$$\hbox {CLE}_{16/\kappa '}$$ percolation and the$$\hbox {FK}_q$$ q -state Potts model (which makes sense even for non-integerq between 1 and 4) if and only if . This provides further evidence for the long-standing belief that$$q=4\cos ^2(4\pi / \kappa ')$$ and$$\hbox {CLE}_{\kappa '}$$ represent the scaling limits of$$\hbox {CLE}_{16/\kappa '}$$ percolation and the$$\hbox {FK}_q$$ q -Potts model whenq and are related in this way. Another consequence of the formula for$$\kappa '$$ is the value of half-plane arm exponents for such divide-and-color models (a.k.a. fuzzy Potts models) that turn out to take a somewhat different form than the usual critical exponents for two-dimensional models.$$\rho (p,\kappa ')$$