skip to main content

Title: Population dynamics of multiple triplet excitons revealed from time-dependent fluorescence quenching of single conjugated polymer chains

The advent of multiple exciton harvesting schemes and prolonging exciton lifetimes to improve performance attributes of solar cells based on conjugated organic materials presents some interesting challenges that must be overcome in order to realize the full potential of these strategies. This is especially important for applications involving multi-chromophoric conjugated polymers where interactions between multiple spin-forbidden triplet excitons can be significant and are mediated by chain conformation. We use single molecule spectroscopic techniques to investigate interactions between multiple triplet excitons and emissive singlets by monitoring time-dependent fluorescence quenching on time scales commensurate with the triplet lifetime. Structurally related conjugated polymers differing by heteroatom substitution were targeted and we use a stochastic photodynamic model to numerically simulate the evolution of multi-exciton populations following photoexcitation. Single chains of poly(3-hexylthiophene) (P3HT) exhibit longer-lived triplet dynamics and larger steady-state triplet occupancies compared to those of poly(3-hexylselenophene) (P3HS), which has a larger reported triplet yield. Triplet populations evolve and relax much faster in P3HS which only becomes evident when considering all kinetic factors governing exciton population dynamics. Overall, we uncover new guidelines for effectively managing multi-exciton populations and interactions in conjugated polymers and improving their light harvesting efficiency.

Publication Date:
Journal Name:
Scientific Reports
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The performance of conjugated polymer devices is largely dictated by charge transport processes. However, it is difficult to obtain a clear relationship between conjugated polymer structures and charge transport properties, due to the complexity of the structure and the dispersive nature of charge transport in conjugated polymers. Here, we develop a method to map the energy landscape for charge transport in conjugated polymers based on simultaneous, correlated charge carrier tracking and single-particle fluorescence spectroscopy. In nanoparticles of the conjugated polymer poly[9,9-dioctylfluorenyl-2,7-diyl)-co-1,4-benzo-{2,1′-3}-thiadiazole)], two dominant chain conformations were observed, a blue-emitting phase (λmax = 550 nm) and a red-emitting phase (λmax = 595 nm). Hole polarons were trapped within the red phase, only occasionally escaping into the blue phase. Polaron hopping between the red-emitting traps was observed, with transition time ranging from tens of milliseconds to several seconds. These results provide unprecedented nanoscale detail about charge transport at the single carrier level.

  2. Frenkel excitons are the primary photoexcitations in organic semiconductors and are ultimately responsible for the optical properties of such materials. They are also predicted to form bound exciton pairs, termed biexcitons, which are consequential intermediates in a wide range of photophysical processes. Generally, we think of bound states as arising from an attractive interaction. However, here, we report on our recent theoretical analysis, predicting the formation of stable biexciton states in a conjugated polymer material arising from both attractive and repulsive interactions. We show that in J-aggregate systems, 2J-biexcitons can arise from repulsive dipolar interactions with energies E 2 J > 2 E J , while in H-aggregates, 2H-biexciton states with energies E 2 H < 2 E H can arise corresponding to attractive dipole exciton/exciton interactions. These predictions are corroborated by using ultrafast double-quantum coherence spectroscopy on a [poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene)] material that exhibits both J- and H-like excitonic behavior.
  3. Hybrid materials comprised of inorganic quantum dots functionalized with small-molecule organic chromophores have emerged as promising materials for reshaping light's energy content. Quantum dots in these structures can serve as light harvesting antennas that absorb photons and pass their energy to molecules bound to their surface in the form of spin-triplet excitons. Energy passed in this manner can fuel upconversion schemes that use triplet fusion to convert infrared light into visible emission. Likewise, triplet excitons passed in the opposite direction, from molecules to quantum dots, can enable solar cells that use singlet fission to circumvent the Shockley–Queisser limit. Silicon QDs represent a key target for these hybrid materials due to silicon's biocompatibility and preeminence within the solar energy market. However, while triplet transfer from silicon QDs to molecules has been observed, no reports to date have shown evidence of energy moving in the reverse direction. Here, we address this gap by creating silicon QDs functionalized with perylene chromophores that exhibit bidirectional triplet exciton transfer. Using transient absorption, we find triplet transfer from silicon to perylene takes place over 4.2 μs while energy transfer in the reverse direction occurs two orders of magnitude faster, on a 22 ns timescale. To demonstratemore »this system's utility, we use it to create a photon upconversion system that generates blue emission at 475 nm using photons with wavelengths as long as 730 nm. Our work shows formation of covalent linkages between silicon and organic molecules can provide sufficient electronic coupling to allow efficient bidirectional triplet exchange, enabling new technologies for photon conversion.« less
  4. Abstract The equilibrium and non-equilibrium optical properties of single-layer transition metal dichalcogenides (TMDs) are determined by strongly bound excitons. Exciton relaxation dynamics in TMDs have been extensively studied by time-domain optical spectroscopies. However, the formation dynamics of excitons following non-resonant photoexcitation of free electron-hole pairs have been challenging to directly probe because of their inherently fast timescales. Here, we use extremely short optical pulses to non-resonantly excite an electron-hole plasma and show the formation of two-dimensional excitons in single-layer MoS 2 on the timescale of 30 fs via the induced changes to photo-absorption. These formation dynamics are significantly faster than in conventional 2D quantum wells and are attributed to the intense Coulombic interactions present in 2D TMDs. A theoretical model of a coherent polarization that dephases and relaxes to an incoherent exciton population reproduces the experimental dynamics on the sub-100-fs timescale and sheds light into the underlying mechanism of how the lowest-energy excitons, which are the most important for optoelectronic applications, form from higher-energy excitations. Importantly, a phonon-mediated exciton cascade from higher energy states to the ground excitonic state is found to be the rate-limiting process. These results set an ultimate timescale of the exciton formation in TMDs and elucidatemore »the exceptionally fast physical mechanism behind this process.« less
  5. Hybrid perovskites incorporating conjugated organic cations enable unusual charge carrier interactions among organic and inorganic structural components, but are difficult to prepare as films due to disparate component chemical/physical characteristics ( e.g. , solubility, thermal stability). Here we demonstrate that resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) mitigates these challenges, enabling facile deposition of lead-halide-based perovskite films incorporating variable-length oligothiophene cations. Density functional theory (DFT) predicts suitable organic and inorganic moieties that form quantum-well-like structures with targeted luminescence or exciton separation/quenching. RIR-MAPLE-deposited films enable confirmation of these predictions by optical measurements, which further display excited state behavior transcending traditional quantum-well models— i.e. , with appropriate selection of specially synthesized organic/inorganic moieties, intercomponent carrier transfer efficiently converts excitons from singlet to triplet states in organics for which intersystem crossing cannot ordinarily compete with recombination. These observations demonstrate the uniquely versatile excited-state behavior in hybrid perovskite quantum wells, and the value of integrating DFT, organic synthesis, RIR-MAPLE and spectroscopy for screening/preparing rationally devised complex structures.