skip to main content


Title: Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content
Abstract

Specimens of silica sand treated via enzyme induced carbonate precipitation (EICP) showed surprisingly high strength at a relatively low carbonate content when non-fat powdered milk was included in the treatment solution. EICP is a biologically-based soil improvement technique that uses free urease enzyme to catalyze the hydrolysis of urea in an aqueous solution, producing carbonate ions and alkalinity that in the presence of calcium cations leads to precipitation of calcium carbonate. The strength achieved at less than 1.4% carbonate content via a single cycle of treatment was unprecedented compared to results reported in the literature from both EICP and microbially induced carbonate precipitation (MICP). Scanning electron microscope images show that in the specimens treated with the solution containing powdered milk the carbonate precipitate was concentrated at interparticle contacts. The impact of these results include reductions in the concentration of substrate and enzyme required to achieve a target compressive strength, reduction in the undesirable ammonium chloride by-product, and, depending on the desired strength, reduction in the number of cycles of EICP treatment. These advantages enhance the potential for development of a sustainable method of soil improvement via hydrolysis of urea.

 
more » « less
NSF-PAR ID:
10153351
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bio‐mediated soil improvement technologies leverage microbial enzymatic and metabolic processes to generate minerals, gases and biopolymers that can improve soil engineering behaviours with the potential to reduce detrimental environmental impacts when compared with conventional methods. Ureolytic biocementation is perhaps the most widely researched of these processes and relies on urea hydrolysis in the presence of calcium to initiate the precipitation of calcium carbonate minerals on soil particle surfaces and contacts, thereby improving soil behaviours. Although effective, urea hydrolysis generates aqueous ammonium by‐products that may result in undesirable environmental and human health impacts, if left unaddressed. Recent studies have shown the potential of rinse solution injections to effectively remove generated ammonium following biocementation through both advective flow and the removal of sorbed ammonium from soil surfaces; however, critical gaps remain in our understanding of the effect of rinse solution composition and injection strategies on ammonium removal efficacy. In this study, 16 soil column experiments were performed to investigate the effect of rinse solution cation types, cation concentrations, applied injection sequences and biocementation treatment variations on the removal of ammonium from a biocemented poorly graded sand. All columns receiving cation‐enriched rinse solutions achieved greater than 98% aqueous, 65% sorbed and 95% total ammonium removal after injecting 12 pore volumes, with no detectable impacts on cementation integrity. Cation‐enriched solutions specifically enhanced sorbed ammonium removal and achieved sorbed ammonium concentrations up to 2 orders of magnitude less than those observed in columns rinsed with deionized water alone. Columns receiving K+‐based rinse solutions and 12 daily 1‐PV rinse injections also achieved greater total ammonium removal when compared with comparable columns receiving rinse solutions containing other cations and continuous 12‐PV rinse injections.

     
    more » « less
  2. Viana da Fonseca, António ; Ferreira, Cristiana (Ed.)
    Microbially induced carbonate precipitation (MICP) is a bio-mediated ground improvement technique that can increase soil stiffness and produce cohesion within granular material. Most experimental investigations on MICP-treated soils are performed on idealized granular materials. Evaluating a narrow range of particle sizes dismisses the potential influence of soil fabric on MICP treatment efficiency. Therefore, little is known regarding the influence of soil fabric on the level of improvement achievable post-MICP treatment. We investigate the influence of the coefficient of uniformity (Cu) on the level of improvement that can be obtained from MICP treatment. This study couples unconfined compression testing with microscale observations obtained from x-ray computed tomography (CT) of two sand mixtures with different Cu values. A soil column and CT specimen of each sand mixture were prepared and received the same number of MICP- injections. The shear wave velocity (Vs) of the soil columns was monitored to evaluate the increase in soil stiffness over time. After MICP treatment, the bio-cemented columns were subjected to unconfined compressive strength testing. Results indicate that for a similar mass of carbonate, the soil with a larger Cu experienced a greater increase in Vs but a lower maximum unconfined compressive strength. Through CT imaging, the soil with a smaller Cu was observed to have a more uniform distribution of carbonate within the sand matrix whereas the soil with a larger Cu has more sporadic MICP trends. This study elucidates the influence of soil fabric on the level of improvement that can be achieved through MICP treatment and assesses the reliability of x-ray CT scanning of MICP-treated sands with moderate carbonate content. 
    more » « less
  3. Numerous laboratory studies in the past decade have demonstrated the ability of microbially induced calcite precipitation (MICP), a bio-mediated soil improvement method, to favorably transform a soil’s engineering properties including increased shear strength and stiffness with reductions in hydraulic conductivity and porosity. Despite significant advances in treatment application techniques and characterization of post-treatment engineering properties, relationships between biogeochemical conditions during precipitation and post-treatment material properties have remained poorly understood. Bacterial augmentation, stimulation, and cementation treatments can vary dramatically in their chemical constituents, concentrations, and ratios between researchers, with specific formulas oftentimes perpetuating despite limited understanding of their engineering implications. In this study, small-scale batch experiments were used to systematically investigate how biogeochemical conditions during precipitate synthesis may influence resulting bio-cementation and related material engineering behaviors. Aqueous solution chemistry was monitored in time to better understand the relationship between the kinetics of ureolysis and calcium carbonate precipitation, and resulting precipitates. Following all experiments, precipitates were evaluated using x-ray diffraction and scanning electron microscopy to characterize mineralogy and morphology. Results obtained from these investigations are expected to help identify the primary chemical and biological factors during synthesis that may control bio-cementation material properties and 
    more » « less
  4. Abstract

    Microbially Induced Desaturation and Precipitation (MIDP) through denitrification is an emerging ground improvement method in which indigenous nitrate reducing bacteria are stimulated to introduce biogas, biominerals and biomass in the soil matrix. In this study, a numerical model is developed to evaluate the effect of biogas, biominerals and biomass on the hydraulic properties of soils treated with MIDP. The proposed model couples the biochemical conversions to changes of porosity and water saturation and predicts changes in permeability through two separate power law equations. Experimental studies from the literature are used to calibrate the model. Comparing the results with other studies on bioclogging or biomineralization in porous media reveals that the combined production of biogas, biomass, and biominerals results in efficient clogging, in the sense that only a small amount of products leads to a substantial permeability reduction. Based on this comparison, the authors postulate that biogenic gas bubbles preferably form within the larger pore bodies. The presence of biogenic gas in the larger pore bodies forces calcium carbonate minerals and biomass to be formed mainly at the pore throats. The interaction between the different phases results in more efficient clogging than observed in other studies which focus on a single product only.

     
    more » « less
  5. null (Ed.)
    The end goal of this research is assessing the feasibility of using enzyme induced carbonate precipitation (EICP) to create a cemented top layer to control runoff erosion in sloping sandy soil. The paper presents the results of an experimental study of bench-scale tests on EICP-treated sands to determine a treatment method feasible for field placement for this application. The soils tested were two natural sands and Ottawa 20-30 sand used as control. The EICP application methods were percolation by gravity, one-step mix-compact, and two-step mix-compact. Other conditions considered were pre-rinsing the sand prior to treatment, adjusting soil pH prior to treatment, and changing the EICP solution concentration. Promising results for this field application were obtained using the two-step mix-compact when the soil was first mixed with the urease enzyme solution before compaction. Considering that the EICP reaction starts once all components are added, this method would ensure that the reaction does not take place before the protective layer of treated soil has been installed. The effect of pre-rinsing the natural sand was not consistent throughout the testing conditions and its role in improving soil cementation in natural sand needs further study. 
    more » « less