skip to main content


Title: Entrainment of Lymphatic Contraction to Oscillatory Flow
Abstract

Lymphedema, a disfiguring condition characterized by an asymmetrical swelling of the limbs, is suspected to be caused by dysfunctions in the lymphatic system. A possible source of lymphatic dysfunction is the reduced mechanosensitivity of lymphangions, the spontaneously contracting units of the lymphatic system. In this study, the entrainment of lymphangions to an oscillatory wall shear stress (OWSS) is characterized in rat thoracic ducts in relation to their shear sensitivity. The critical shear stress above which the thoracic ducts show a substantial inhibition of contraction was found to be significantly negatively correlated to the diameter of the lymphangion. The entrainment of the lymphangion to an applied OWSS was found to be significantly dependent on the difference between the applied frequency and the intrinsic frequency of contraction of the lymphangion. The strength of the entrainment was also positively correlated to the applied shear stress when the applied shear was less than the critical shear stress of the vessel. The ejection fraction and fractional pump flow were also affected by the difference between the frequency of the applied OWSS and the vessel's intrinsic contraction frequency. The results suggest an adaptation of the lymphangion contractility to the existing oscillatory shear stress as a function of its intrinsic contractility and shear sensitivity. These adaptations might be crucial to ensure synchronized contraction of lymphangions through mechanosensitive means and might help explain the lymphatic dysfunctions that result from impaired mechanosensitivity.

 
more » « less
NSF-PAR ID:
10153387
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Key points

    We present the firstin vivoevidence that lymphatic contraction can entrain with an external oscillatory mechanical stimulus.

    Lymphatic injury can alter collecting lymphatic contractility, but not much is known about how its mechanosensitivity to external pressure is affected, which is crucial given the current pressure application methods for treating lymphoedema.

    We show that oscillatory pressure waves (OPW), akin to intermittent pneumatic compression (IPC) therapy, optimally entrain lymphatic contractility and modulate function depending on the frequency and propagation speed of the OPW.

    We show that the OPW‐induced entrainment and contractile function in the intact collecting lymphatics are enhanced 28 days after a contralateral lymphatic ligation surgery.

    The results show that IPC efficacy can be improved through proper selection of OPW parameters, and that collecting lymphatics adapt their function and mechanosensitivity after a contralateral injury, switching their behaviour to a pump‐like configuration that may be more suited to the altered microenvironment.

    Abstract

    Intermittent pneumatic compression (IPC) is commonly used to control the swelling due to lymphoedema, possibly modulating the collecting lymphatic function. Lymphoedema causes lymphatic contractile dysfunction, but the consequent alterations in the mechanosensitivity of lymphatics to IPC is not known. In the present work, the spatiotemporally varying oscillatory pressure waves (OPW) generated during IPC were simulated to study the modulation of lymphatic function by OPW under physiological and pathological conditions. OPW with three temporal frequencies and three propagation speeds were applied to rat tail collecting lymphatics. The entrainment of the lymphatics to OPW was significantly higher at a frequency of 0.05 Hz compared with 0.1 Hz and 0.2 Hz (P = 0.0054 andP = 0.014, respectively), but did not depend on the OPW propagation speed. Lymphatic function was significantly higher at a frequency of 0.05 Hz and propagation speed of 2.55 mm/s (P = 0.015). Exogenous nitric oxide was not found to alter OPW‐induced entrainment. A contralateral lymphatic ligation surgery was performed to simulate partial lymphatic injury in rat tails. The intact vessels showed a significant increase in entrainment to OPW, 28 days after ligation (compared with sham) (P = 0.016), with a similar increase in lymphatic transport function (P = 0.0029). The results suggest an enhanced mechanosensitivity of the lymphatics, along with a transition to a pump‐like behaviour, in response to a lymphatic injury. These results enhance our fundamental understanding of how lymphatic mechanosensitivity assists the coordination of lymphatic contractility and how this might be leveraged in IPC therapy.

     
    more » « less
  2. The lymphatic vascular function is regulated by pulsatile shear stresses through signaling mediated by intracellular calcium [Ca 2+ ] i . Further, the intracellular calcium dynamics mediates signaling between lymphatic endothelial cells (LECs) and muscle cells (LMCs), including the lymphatic tone and contractility. Although calcium signaling has been characterized on LEC monolayers under uniform or step changes in shear stress, these dynamics have not been revealed in LMCs under physiologically-relevant co-culture conditions with LECs or under pulsatile flow. In this study, a cylindrical organ-on-chip platform of the lymphatic vessel (Lymphangion-Chip) consisting of a lumen formed with axially-aligned LECs co-cultured with transversally wrapped layers of LMCs was exposed to step changes or pulsatile shear stress, as often experienced in vivo physiologically or pathologically. Through real-time analysis of intracellular calcium [Ca 2+ ] i release, the device reveals the pulsatile shear-dependent biological coupling between LECs and LMCs. Upon step shear, both cell types undergo a relatively rapid rise in [Ca 2+ ] i followed by a gradual decay. Importantly, under pulsatile flow, analysis of the calcium signal also reveals a secondary sinusoid within the LECs and LMCs that is very close to the flow frequency. Finally, LMCs directly influence the LEC calcium dynamics both under step changes in shear and under pulsatile flow, demonstrating a coupling of LEC–LMC signaling. In conclusion, the Lymphangion-Chip is able to illustrate that intracellular calcium [Ca 2+ ] i in lymphatic vascular cells is dependent on pulsatile shear rate and therefore, serves as an analytical biomarker of mechanotransduction within LECs and LMCs, and functional consequences. 
    more » « less
  3. The transition from laminar to turbulent flow is of great interest since it is one of the most difficult and unsolved problems in fluids engineering. The transition processes are significantly important because the transition has a huge impact on almost all systems that come in contact with a fluid flow by altering the mixing, transport, and drag properties of fluids even in simple pipe and channel flows. Generally, in most transportation systems, the transition to turbulence causes a significant increase in drag force, energy consumption, and, therefore, operating cost. Thus, understanding the underlying mechanisms of the laminar-to-turbulent transition can be a major benefit in many ways, especially economically. There have been substantial previous studies that focused on testing the stability of laminar flow and finding the critical amplitudes of disturbances necessary to trigger the transition in various wall-bounded systems, including circular pipes and square ducts. However, there is still no fundamental theory of transition to predict the onset of turbulence. In this study, we perform direct numerical simulations (DNS) of the transition flows from laminar to turbulence in a channel flow. Specifically, the effects of different magnitudes of perturbations on the onset of turbulence are investigated. The perturbation magnitudes vary from 0.001 (0.1%) to 0.05 (5%) of a typical turbulent velocity field, and the Reynolds number is from 5,000 to 40,000. Most importantly, the transition behavior in this study was found to be in good agreement with other reported studies performed for fluid flow in pipes and ducts. With the DNS results, a finite amplitude stability curve was obtained. The critical magnitude of perturbation required to cause transition was observed to be inversely proportional to the Reynolds number for the magnitude from 0.01 to 0.05. We also investigated the temporal behavior of the transition process, and it was found that the transition time or the time required to begin the transition process is inversely correlated with the Reynolds number only for the magnitude from 0.02 to 0.05, while different temporal behavior occurs for smaller perturbation magnitudes. In addition to the transition time, the transition dynamics were investigated by observing the time series of wall shear stress. At the onset of transition, the shear stress experiences an overshoot, then decreases toward sustained turbulence. As expected, the average values of the wall shear stress in turbulent flow increase with the Reynolds number. The change in the wall shear stress from laminar to overshoot was, of course, found to increase with the Reynolds number. More interestingly was the observed change in wall shear stress from the overshoot to turbulence. The change in magnitude appears to be almost insensitive to the Reynolds number and the perturbation magnitude. Because the change in wall shear stress is directly proportional to the pumping power, these observations could be extremely useful when determining the required pumping power in certain flow conditions. Furthermore, the stability curve and wall shear stress changes can be considered robust features for future applications, and ultimately interpreted as evidence of progress toward solving the unresolved fluids engineering problem. 
    more » « less
  4. null (Ed.)
    Using numerical simulations, we probe the fluid flow in an axisymmetric peristaltic vessel fitted with elastic bi-leaflet valves. In this biomimetic system that mimics the flow generated in lymphatic vessels, we investigate the effects of the valve and vessel properties on pumping performance of the valved peristaltic vessel. The results indicate that valves significantly increase pumping by reducing backflow. The presence of valves, however, increases the viscous resistance, therefore requiring greater work compared to valveless vessels. The benefit of the valves is the most significant when the fluid is pumped against an adverse pressure gradient and for low vessel contraction wave speeds. We identify the optimum vessel and valve parameters leading to the maximum pumping efficiency. We show that the optimum valve elasticity maximizes the pumping flow rate by allowing the valve to block the backflow more effectively while maintaining low resistance during the forward flow. We also examine the pumping in vessels where the vessel contraction amplitude is a function of the adverse pressure gradient, as found in lymphatic vessels. We find that, in this case, the flow is limited by the work generated by the contracting vessel, suggesting that the pumping in lymphatic vessels is constrained by the performance of the lymphatic muscle. Given the regional heterogeneity of valve morphology observed throughout the lymphatic vasculature, these results provide insight into how these variations might facilitate efficient lymphatic transport in the vessel's local physiologic context. 
    more » « less
  5. Abstract

    Estimates of the onset of sediment motion are integral for flood protection and river management but are often highly inaccurate. The critical shear stress (τ*c) for grain entrainment is often assumed constant, but measured values can vary by almost an order of magnitude between rivers. Such variations are typically explained by differences in measurement methodology, grain size distributions, or flow hydraulics, whereas grain resistance to motion is largely assumed to be constant. We demonstrate that grain resistance varies strongly with the bed structure, which is encapsulated by the particle height above surrounding sediment (protrusion,p) and intergranular friction (ϕf). We incorporate these parameters into a novel theory that correctly predicts resisting forces estimated in the laboratory, field, and a numerical model. Our theory challenges existing models, which significantly overestimate bed mobility. In our theory, small changes inpandϕfcan induce large changes inτ*cwithout needing to invoke variations in measurement methods or grain size. A data compilation also reveals that scatter in empirical values ofτ*ccan be partly explained by differences inpbetween rivers. Therefore, spatial and temporal variations in bed structure can partly explain the deviation ofτ*cfrom an assumed constant value. Given that bed structure is known to vary with applied shear stresses and upstream sediment supply, we conclude that a constantτ*cis unlikely. Values ofτ*care not interchangeable between streams, or even through time in a given stream, because they are encoded with the channel history.

     
    more » « less