skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Affordable Microfluidic Bead-Sorting Platform for Automated Selection of Porous Particles Functionalized with Bioactive Compounds

The ability to rapidly and accurately evaluate bioactive compounds immobilized on porous particles is crucial in the discovery of drugs, diagnostic reagents, ligands, and catalysts. Existing options for solid phase screening of bioactive compounds, while highly effective and well established, can be cost-prohibitive for proof-of-concept and early stage work, limiting its applicability and flexibility in new research areas. Here, we present a low-cost microfluidics-based platform enabling automated screening of small porous beads from solid-phase peptide libraries with high sensitivity and specificity, to identify leads with high binding affinity for a biological target. The integration of unbiased computer assisted image processing and analysis tools, provided the platform with the flexibility of sorting through beads with distinct fluorescence patterns. The customized design of the microfluidic device helped with handling beads with different diameters (~100–300 µm). As a microfluidic device, this portable novel platform can be integrated with a variety of analytical instruments to perform screening. In this study, the system utilizes fluorescence microscopy and unsupervised image analysis, and can operate at a sorting speed of up to 125 beads/hr (~3.5 times faster than a trained operator) providing >90% yield and >90% bead sorting accuracy. Notably, the device has proven successful in screening a model solid-phase peptide library by showing the ability to select beads carrying peptides binding a target protein (human IgG).

more » « less
Award ID(s):
1653590 1743404
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Photo‐affinity adsorbents (i.e., translucent matrices functionalized with ligands featuring light‐controlled biorecognition) represent a futuristic technology for purifying labile biologics. In this study, a framework for prototyping photo‐affinity adsorbents comprising azobenzene‐cyclized peptides (ACPs) conjugated to translucent porous beads (ChemMatrix) is presented. This approach combines computational and experimental tools for designing ACPs and investigating their light‐controlled isomerization kinetics and protein biorecognition. First, a modular design for tailoring ACP's conformation, facilitating sequencing, and streamlining the in silico modeling of cis/trans isomers and their differential protein binding is introduced. Then, a spectroscopic system for measuring the photo‐isomerization kinetics of ACPs on ChemMatrix beads is reported; using this device, it is demonstrated that the isomerization at different light intensities is correlated to the cyclization geometry, specifically the energy difference of trans versus cis isomers as calculated in silico. Also, a microfluidic device for sorting ACP‐ChemMatrix beads to select and validate photo‐affinity ligands using Vascular Cell Adhesion Molecule 1 (VCAM‐1) as target protein and cycloAZOB[GVHAKQHRN‐K*]‐G‐ChemMatrix as model photo‐affinity adsorbent is presented. The proposed ACPs exhibit rapid and defined light‐controlled isomerization and biorecognition. Controlling the adsorption and release of VCAM‐1 using light demonstrates the potential of photo‐affinity adsorbents for targets whose biochemical liability poses challenges to its purification.

    more » « less
  2. In drop-based microfluidics, an aqueous sample is partitioned into drops using individual pump sources that drive water and oil into a drop-making device. Parallelization of drop-making devices is necessary to achieve high-throughput screening of multiple experimental conditions, especially in time-sensitive studies. Here, we present the plate-interfacing parallel encapsulation (PIPE) chip, a microfluidic chip designed to generate 50 to 90 μm diameter drops of up to 96 different conditions in parallel by interfacing individual drop makers with a standard 384-well microtiter plate. The PIPE chip is used to generate two types of optically barcoded drop libraries consisting of two-color fluorescent particle combinations: a library of 24 microbead barcodes and a library of 192 quantum dot barcodes. Barcoded combinations in the drop libraries are rapidly measured within a microfluidic device using fluorescence detection and distinct barcoded populations in the fluorescence drop data are identified using DBSCAN data clustering. Signal analysis reveals that particle size defines the source of dominant noise present in the fluorescence intensity distributions of the barcoded drop populations, arising from Poisson loading for microbeads and shot noise for quantum dots. A barcoded population from a drop library is isolated using fluorescence-activated drop sorting, enabling downstream analysis of drop contents. The PIPE chip can improve multiplexed high-throughput assays by enabling simultaneous encapsulation of barcoded samples stored in a microtiter plate and reducing sample preparation time. 
    more » « less
  3. Abstract

    The application of rationally designed therapeutic peptides (TP) may improve outcomes in cancer treatment. These peptides hold the potential to directly target proliferative pathways and stimulate cell arrest or death pathways. Elastin‐like polypeptide (ELP) is an elastin derived biopolymer that undergoes a thermally mediated phase transition. This study employs p50, a nuclear localization sequence derived peptide that inhibits the activation of NFκB and is implicated in cancer cell survival and metastasis. In order to effectively delivery p50, it is conjugated to SynB1‐ELP1, a thermally responsive macromolecular carrier. By applying an external heat source, mild hyperthermic conditions (41 °C) induce aggregation and therefore can be used to specifically target ELP to solid tumors in cancer therapy. The addition of a cell penetrating peptide (CPP) to the N‐terminus of the macromolecular carrier enhances the cellular uptake and directs the subcellular localization of the bioactive peptide. The novel TP, p50, inhibits proliferation and induces apoptosis of breast cancer cells by blocking the intranuclear import of NFκB. By expanding the repertoire of oncogenic targets, CPPs, and ELP carrier sizes, ELP‐based polypeptides may be modulated to optimize the delivery of these novel therapies and allow for the flexibility to create individualized cancer therapies.

    more » « less
  4. Abstract

    Joining biology with materials science requires the ability to design, engineer and control biology/solid‐state materials interfaces at the molecular level. The specific molecular interactions that take place among biomolecules, known as molecular recognition, enable all aspects of molecular processes in living systems prerequisite to the biological functions. Having the ability to establish specific biological interactions between the solid materials and biological constituents is essential for precise design of biologically viable soft interfaces that are molecularly tailored at solid surfaces. Solid‐binding peptides offer excellent opportunities in surface biofunctionalization over the traditionally utilized chemical approaches which generally make use of covalent bonds for surface molecular attachments with limited flexibility. Solid‐binding peptides are selected using directed evolution techniques using genotype to phenotype relationships and therefore referred also as genetically engineered peptides for inorganics (GEPI) and exclusively bind to solid materials using molecular recognition. Here, the peptide has weak interactions at multiple contact points that are established between the biomolecule and the solid lattice, and then folds into a conformation coherent with the underlying solid lattice through self‐organization on the surface. Solid‐binding peptides provide an unprecedented biological advantage as modular building blocks to couple biological and synthetic entities at the bio–solid interfaces. Taking full advantage of biology's versatility, they can easily be engineered to form chimeric molecules with inherent multifunctionality displaying biofunctional molecular entities, such as enzymes, co‐factors, antimicrobial peptides, antibodies, nucleic acids and molecular probes that target biomarkers. This minireview provides an insight into the key principles of solid‐binding peptides for advancing surfaces biofunctionalization by a selected set of examples on chimeric functions built upon linking, displaying and assembling functional molecular moieties at solid surfaces ranging from enzymatic biocatalysis to antimicrobial coatings. Modular multifunctional peptide design offers to tune molecular processes with coupled biological functions for a wide variety of applications in biotechnology, nanotechnology and medicine.

    more » « less
  5. null (Ed.)
    Lab-on-a-chip technology offers an ideal platform for low-cost, reliable, and easy-to-use diagnostics of key biomarkers needed for early screening of diseases and other health concerns. In this work, a graphene field-effect transistor (GFET) functionalized with target-binding aptamers is used as a biosensor for the detection of thrombin protein biomarker. Furthermore, this GFET is integrated with a microfluidic device for enhanced sensing performances in terms of detection limit, sensitivity, and continuous monitoring. Under this platform, a picomolar limit of detection was achieved for measuring thrombin; in our experiment measured as low as 2.6 pM. FTIR, Raman and UV-Vis spectroscopy measurements were performed to confirm the device functionalization steps. Based on the concentration-dependent calibration curve, a dissociation constant of K D = 375.8 pM was obtained. Continuous real-time measurements were also conducted under a constant gate voltage ( V GS ) to observe the transient response of the sensor when analyte was introduced to the device. The target selectivity of the sensor platform was evaluated and confirmed by challenging the GFET biosensor with various concentrations of lysozyme protein. The results suggest that this device technology has the potential to be used as a general diagnostic platform for measuring clinically relevant biomarkers for point-of-care applications. 
    more » « less