skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: A diuranium carbide cluster stabilized inside a C80 fullerene cage
Abstract

Unsupported non-bridged uranium–carbon double bonds have long been sought after in actinide chemistry as fundamental synthetic targets in the study of actinide-ligand multiple bonding. Here we report that, utilizingIh(7)-C80fullerenes as nanocontainers, a diuranium carbide cluster, U=C=U, has been encapsulated and stabilized in the form of UCU@Ih(7)-C80. This endohedral fullerene was prepared utilizing the Krätschmer–Huffman arc discharge method, and was then co-crystallized with nickel(II) octaethylporphyrin (NiII-OEP) to produce UCU@Ih(7)-C80·[NiII-OEP] as single crystals. X-ray diffraction analysis reveals a cage-stabilized, carbide-bridged, bent UCU cluster with unexpectedly short uranium–carbon distances (2.03 Å) indicative of covalent U=C double-bond character. The quantum-chemical results suggest that both U atoms in the UCU unit have formal oxidation state of +5. The structural features of UCU@Ih(7)-C80and the covalent nature of the U(f1)=C double bonds were further affirmed through various spectroscopic and theoretical analyses.

 
more » « less
NSF-PAR ID:
10153460
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The nature of the actinide-actinide bonds is of fundamental importance to understand the electronic structure of the 5 f elements. It has attracted considerable theoretical attention, but little is known experimentally as the synthesis of these chemical bonds remains extremely challenging. Herein, we report a strong covalent Th-Th bond formed between two rarely accessible Th 3+ ions, stabilized inside a fullerene cage nanocontainer as Th 2 @ I h (7)-C 80 . This compound is synthesized using the arc-discharge method and fully characterized using several techniques. The single-crystal X-Ray diffraction analysis determines that the two Th atoms are separated by 3.816 Å. Both experimental and quantum-chemical results show that the two Th atoms have formal charges of +3 and confirm the presence of a strong covalent Th-Th bond inside I h (7)-C 80 . Moreover, density functional theory and ab initio multireference calculations suggest that the overlap between the 7 s /6 d hybrid thorium orbitals is so large that the bond still exists at Th-Th separations larger than 6 Å. This work demonstrates the authenticity of covalent actinide metal-metal bonds in a stable compound and deepens our fundamental understanding of f element metal bonds. 
    more » « less
  2. Abstract

    Actinide diatomic molecules are ideal models to study elusive actinide multiple bonds, but most of these diatomic molecules have so far only been studied in solid inert gas matrices. Herein, we report a charged U≡N diatomic species captured in fullerene cages and stabilized by the U-fullerene coordination interaction. Two diatomic clusterfullerenes, viz. UN@Cs(6)-C82and UN@C2(5)-C82, were successfully synthesized and characterized. Crystallographic analysis reveals U-N bond lengths of 1.760(7) and 1.760(20) Å in UN@Cs(6)-C82and UN@C2(5)-C82. Moreover, U≡N was found to be immobilized and coordinated to the fullerene cages at 100 K but it rotates inside the cage at 273 K. Quantum-chemical calculations show a (UN)2+@(C82)2−electronic structure with formal +5 oxidation state (f1) of U and unambiguously demonstrate the presence of a U≡N bond in the clusterfullerenes. This study constitutes an approach to stabilize fundamentally important actinide multiply bonded species.

     
    more » « less
  3. Abstract

    The synthesis and characterization of (tBuPBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe (1) is presented. An unexpected CO2cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly‐structured tetra‐nickel cluster (tBuPBOP)2Ni4(μ‐CO)2(6). Mechanistic investigation of this reaction indicates a reductive scission of CO2by O‐atom transfer to the boron atom via a cooperative nickel‐boron mechanism. The CO2activation reaction produces a three‐coordinate (tBuP2BO)Ni‐acyl intermediate (A) that leads to a (tBuP2BO)−NiIcomplex (B) via a likely radical pathway. The NiIspecies is trapped by treatment with the radical trap (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) to give (tBuP2BO)NiII2‐TEMPO) (7). Additionally,13C and1H NMR spectroscopy analysis using13C‐enriched CO2provides information about the species involved in the CO2activation process.

     
    more » « less
  4. Abstract

    The synthesis and characterization of (tBuPBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe (1) is presented. An unexpected CO2cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly‐structured tetra‐nickel cluster (tBuPBOP)2Ni4(μ‐CO)2(6). Mechanistic investigation of this reaction indicates a reductive scission of CO2by O‐atom transfer to the boron atom via a cooperative nickel‐boron mechanism. The CO2activation reaction produces a three‐coordinate (tBuP2BO)Ni‐acyl intermediate (A) that leads to a (tBuP2BO)−NiIcomplex (B) via a likely radical pathway. The NiIspecies is trapped by treatment with the radical trap (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) to give (tBuP2BO)NiII2‐TEMPO) (7). Additionally,13C and1H NMR spectroscopy analysis using13C‐enriched CO2provides information about the species involved in the CO2activation process.

     
    more » « less
  5. Abstract

    The composition of fluorescent polymer nanoparticles, commonly referred to as carbon dots, synthesized by microwave‐assisted reaction of citric acid and ethylenediamine was investigated by13C,13C{1H},1H─13C,13C{14N}, and15N solid‐state nuclear magnetic resonance (NMR) experiments.13C NMR with spectral editing provided no evidence for significant condensed aromatic or diamondoid carbon phases.15N NMR showed that the nanoparticle matrix has been polymerized by amide and some imide formation. Five small, resolved13C NMR peaks, including an unusual ═CH signal at 84 ppm (1H chemical shift of 5.8 ppm) and ═CN2at 155 ppm, and two distinctive15N NMR resonances near 80 and 160 ppm proved the presence of 5‐oxo‐1,2,3,5‐tetrahydroimidazo[1,2‐a]pyridine‐7‐carboxylic acid (IPCA) or its derivatives. This molecular fluorophore with conjugated double bonds, formed by a double cyclization reaction of citric acid and ethylenediamine as first shown by Y. Song, B. Yang, and coworkers in 2015, accounts for the fluorescence of the carbon dots. Cross‐peaks in a1H─13C HETCOR spectrum with brief1H spin diffusion proved that IPCA is finely dispersed in the polyamide matrix. From quantitative13C and15N NMR spectra, a high concentration (18 ± 2 wt%) of IPCA in the carbon dots was determined. A pronounced gradient in13C chemical‐shift perturbations and peak widths, with the broadest lines near the COO group of IPCA, indicated at least partial transformation of the carboxylic acid of IPCA by amide or ester formation.

     
    more » « less