Integrating phase-change materials in metasurfaces has emerged as a powerful strategy to realize optical devices with tunable electromagnetic responses. Here, phase-change chiral metasurfaces based on GST-225 material with the designed trapezoid-shaped resonators are demonstrated to achieve tunable circular dichroism (CD) responses in the infrared regime. The asymmetric trapezoid-shaped resonators are designed to support two chiral plasmonic resonances with opposite CD responses for realizing switchable CD between negative and positive values using the GST phase change from amorphous to crystalline. The electromagnetic field distributions of the chiral plasmonic resonant modes are analyzed to understand the chiroptical responses of the metasurface. Furthermore, the variations in the absorption spectrum and CD value for the metasurface as a function of the baking time during the GST phase transition are analyzed to reveal the underlying thermal tuning process of the metasurface. The demonstrated phase-change metasurfaces with tunable CD responses hold significant promise in enabling many applications in the infrared regime such as chiral sensing, encrypted communication, and thermal imaging.
Functional surfaces that can control light across the electromagnetic spectrum are highly desirable. Plasmonic nanostructures can assume this role by exhibiting dimension-tunable resonances that span multiple electromagnetic regimes. However, changing these structural parameters often impacts the higher-order resonances and spectral features in lower-wavelength domains. In this study, we discuss a cavity-coupled plasmonic system with resonances that are tunable across the 3–5 or 8–14 μm infrared bands while retaining near-invariant spectral properties in the visible domain. This result is accomplished by regime-dependent resonance mechanisms and their dependence on independent structural parameters. Through the identification and constraint of key parameters, we demonstrate multispectral data encoding, where images, viewable in the infrared spectral domain, appear as uniform areas of color in the visible domain—effectively hiding the information. Fabricated by large area nanoimprint lithography and compatible with flexible surfaces, the proposed system can produce multifunctional coatings for thermal management, camouflage, and anti-counterfeiting.
more » « less- PAR ID:
- 10153464
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Light: Science & Applications
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2047-7538
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The tunability of the longitudinal localized surface plasmon resonances (LSPRs) of metallic nanoarcs is demonstrated with key relationships identified between geometric parameters of the arcs and their resonances in the infrared. The wavelength of the LSPRs is tuned by the mid-arc length of the nanoarc. The ratio between the attenuation of the fundamental and second order LSPRs is governed by the nanoarc central angle. Beneficial for plasmonic enhancement of harmonic generation, these two resonances can be tuned independently to obtain octave intervals through the design of a non-uniform arc-width profile. Because the character of the fundamental LSPR mode in nanoarcs combines an electric and a magnetic dipole, plasmonic nanoarcs with tunable resonances can serve as versatile building blocks for chiroptical and nonlinear optical devices.
-
Colloidal copper nanorods (NRs) display transverse and longitudinal localized surface plasmon resonances. The longitudinal localized surface plasmon modes are tunable through the near‐infrared electromagnetic radiation energies with NR aspect ratios. Visible and near‐infrared transient optical response of the copper NRs is investigated under excitation conditions spanning intraband and interband excitation (0.79−3.50 eV). In both the visible and near‐infrared regions, the spectral response of the samples under intraband excitation (<2 eV) differs substantially from their response under interband excitation (>2 eV). However, the timescale of the electron−phonon coupling estimated from pump fluence‐dependent measurements (
τ ep) is less sensitive to excitation conditions than reports for gold.τ epshortens slightly from ≈616 fs with intraband excitation (at visible probe energies) to ≈565 fs with interband excitation. The observed dynamics correspond to an average sample electron−phonon coupling parameter varying across all conditions from 4.4 × 1016to 6.4 × 1016 J m−3 K−1, which is similar to bulk copper. Furthermore, coherent acoustic phonons are observed for the longitudinal localized surface plasmon resonance with a range of oscillatory periods reflecting sample size dispersion. -
Abstract Circularly polarized light interacts preferentially with the biomolecules to generate spectral fingerprints reflecting their primary and secondary structure in the ultraviolet region of the electromagnetic spectrum. The spectral features can be transferred to the visible and near‐infrared regions by coupling the biomolecules with plasmonic assemblies made of noble metals. Nanoscale gold tetrahelices were used to detect the presence of chiral objects that are 40 times smaller in size by using plane‐polarized light of 550 nm wavelength. The emergence of chiral hotspots in the gaps between 80 nm long tetrahelices differentiate between weakly scattering S‐ vs R‐molecules with optical constants similar to that of organic solvents. Simulations map the spatial distribution of the scattered field to reveal enantiomeric discrimination with selectivity up to 0.54.
-
Optical resonances in nanostructures can be harnessed to produce a wide range of structural colors. Conversely, the analysis of structural colors has been used to clarify the nature of optical resonances. Here, we show that silicon nanowire (NW) pairs can display a wide range of structural colors by controlling their radiative coupling. This is accomplished by exciting a series of Fabry–Pérot-like modes where light is repeatedly scattered between two NWs. These modes are beyond the expectation from the conventional chemical bonding model under a quasi-electrostatic approximation, in which only bonding and antibonding modes can be formed in a pair system through modal hybridization. The additional eigenmodes found in a two-resonator system originate from the nonlinear, frequency-dependent coupling strength derived from the radiative nature of low-
Q resonators. The Fabry–Pérot modes can be tuned across the entire visible frequency range by varying the distance between two NWs, leading to what we believe is a new type of universal building blocks that can provide structural color within a subwavelength footprint. The presented results pave the way toward the design and usage of highly tunable resonances that exploit the radiative coupling of high-index nanostructures.