skip to main content

Title: Covert infrared image encoding through imprinted plasmonic cavities
Abstract

Functional surfaces that can control light across the electromagnetic spectrum are highly desirable. Plasmonic nanostructures can assume this role by exhibiting dimension-tunable resonances that span multiple electromagnetic regimes. However, changing these structural parameters often impacts the higher-order resonances and spectral features in lower-wavelength domains. In this study, we discuss a cavity-coupled plasmonic system with resonances that are tunable across the 3–5 or 8–14 μm infrared bands while retaining near-invariant spectral properties in the visible domain. This result is accomplished by regime-dependent resonance mechanisms and their dependence on independent structural parameters. Through the identification and constraint of key parameters, we demonstrate multispectral data encoding, where images, viewable in the infrared spectral domain, appear as uniform areas of color in the visible domain—effectively hiding the information. Fabricated by large area nanoimprint lithography and compatible with flexible surfaces, the proposed system can produce multifunctional coatings for thermal management, camouflage, and anti-counterfeiting.

Authors:
; ; ; ;
Publication Date:
NSF-PAR ID:
10153464
Journal Name:
Light: Science & Applications
Volume:
7
Issue:
1
ISSN:
2047-7538
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applied to free-space two-dimensional (2D) photonic devices because the surface-incident absolute absorption of SLG is limited to 1%–2%. No significant change in either reflectance or transmittance would be observed even if SLG is made transparent upon gating. To achieve significantly enhanced surface-incident optical absorption in SLG in a device structure that also allows gating, here we embed SLG in an optical slot-antenna-coupled cavity (SAC) framework, simultaneously enhancing SLG absorption by up to 20 times and potentially enabling electrical gating of SLG as a step towards tunable 2D photonic surfaces. This framework synergistically integrates near-field enhancement induced by ultrahigh refractive index semimetal slot-antenna with broadband resonances in visible and infrared regimes, ~ 3 times more effective than a vertical cavity structure alone. An example of this framework consists of self-assembled, close-packed Sn nanodots separated by ~ 10 nm nanogaps on a SLG/SiO2/Al stack, which dramatically increases SLG optical absorption to 10%-25% at λ = 600–1,900 nm. The enhanced SLG absorption spectrum can also be controlled by the insulator thickness.more »For example, SLG embedded in this framework with a 150 nm-thick SiO2 insulating layer displays a distinctive red color in contrast to its surrounding regions without SLG on the same sample under white light illumination. This opens a potential path towards gate-tunable spectral reflectors. Overall, this work initiates a new approach towards tunable 2D photonic surfaces.« less
  2. Optical resonances in nanostructures can be harnessed to produce a wide range of structural colors. Conversely, the analysis of structural colors has been used to clarify the nature of optical resonances. Here, we show that silicon nanowire (NW) pairs can display a wide range of structural colors by controlling their radiative coupling. This is accomplished by exciting a series of Fabry–Pérot-like modes where light is repeatedly scattered between two NWs. These modes are beyond the expectation from the conventional chemical bonding model under a quasi-electrostatic approximation, in which only bonding and antibonding modes can be formed in a pair system through modal hybridization. The additional eigenmodes found in a two-resonator system originate from the nonlinear, frequency-dependent coupling strength derived from the radiative nature of low-Qresonators. The Fabry–Pérot modes can be tuned across the entire visible frequency range by varying the distance between two NWs, leading to what we believe is a new type of universal building blocks that can provide structural color within a subwavelength footprint. The presented results pave the way toward the design and usage of highly tunable resonances that exploit the radiative coupling of high-index nanostructures.

  3. The tunability of the longitudinal localized surface plasmon resonances (LSPRs) of metallic nanoarcs is demonstrated with key relationships identified between geometric parameters of the arcs and their resonances in the infrared. The wavelength of the LSPRs is tuned by the mid-arc length of the nanoarc. The ratio between the attenuation of the fundamental and second order LSPRs is governed by the nanoarc central angle. Beneficial for plasmonic enhancement of harmonic generation, these two resonances can be tuned independently to obtain octave intervals through the design of a non-uniform arc-width profile. Because the character of the fundamental LSPR mode in nanoarcs combines an electric and a magnetic dipole, plasmonic nanoarcs with tunable resonances can serve as versatile building blocks for chiroptical and nonlinear optical devices.

  4. The fixed post-manufacturing properties of metal-based photonic devices impose limitations on their adoption in dynamic photonics. Modulation approaches currently available (e.g. mechanical stressing or electrical biasing) tend to render the process cumbersome or energy-inefficient. Here we demonstrate the promise of utilizing magnesium (Mg) in achieving optical tuning in a simple and controllable manner: etching in water. We revealed an evident etch rate modulation with the control of temperature and structural dimensionality. Further, our numerical calculations demonstrate the substantial tuning range of optical resonances spanning the entire visible frequency range with the etching-induced size reduction of several archetypal plasmonic nanostructures. Our work will help to guide the rational design and fabrication of bio-degradable photonic devices with easily tunable optical responses and minimal power footprint.

  5. Abstract

    The ability to combine continuously tunable narrow-band terahertz (THz) generation that can access both the far-infrared and mid-infrared regimes with nanometer-scale spatial resolution is highly promising for identifying underlying light-matter interactions and realizing selective control of rotational or vibrational resonances in nanoparticles or molecules. Here, we report selective difference frequency generation with over 100 THz bandwidth via femtosecond optical pulse shaping. The THz emission is generated at nanoscale junctions at the interface of LaAlO3/SrTiO3(LAO/STO) that is defined by conductive atomic force microscope lithography, with the potential to perform THz spectroscopy on individual nanoparticles or molecules. Numerical simulation of the time-domain signal facilitates the identification of components that contribute to the THz generation. This ultra-wide-bandwidth tunable nanoscale coherent THz source transforms the LAO/STO interface into a promising platform for integrated lab-on-chip optoelectronic devices with various functionalities.