skip to main content


Title: Ant-plant sociometry in the Azteca-Cecropia mutualism
Abstract

A holistic understanding of superorganism biology requires study of colony sociometry, or the quantitative relationships among growth, nest architecture, morphology, and behavior. For ant colonies that obligately nest within plant hosts, their sociometry is likely intertwined with the plant, which has implications for the evolution, strength, and stability of the mutualism. In theAzteca-Cecropiamutualism, plants provide ants with food rewards and hollow stems for nesting in return for protection from herbivores. Several interesting questions arise when considering ant-plant sociometry: are colony growth and plant growth synchronized? How do colonies distribute themselves within the stem of their host plant? How do plant traits influence worker morphology? How is collective personality related to tree structure, nest organization, and worker morphology? To address these questions, we investigated patterns within and relationships among five major sociometric categories of colonies in the field – plant traits, colony size, nest organization, worker morphology, and collective personality. We found that colony sociometry was intimately intertwined with host plant traits. Colony and plant growth rates were synchronized, suggesting that positive feedback between plant and colony growth stabilizes the mutualism. The colony’s distribution inside the host tree tended to follow leaf growth, with most workers, brood, and the queen in the top half of the tree. Worker morphology correlated with plant size instead of colony size or age, which suggests that plant traits influence worker development. Colony personality was independent of colony distribution and tree structure but may correlate with worker size such that colonies with smaller, less variable workers had more aggressive personalities. This study provides insights into how ant-plant structural relationships may contribute to plant protection and the strength of mutualisms.

 
more » « less
NSF-PAR ID:
10153471
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Among social insects, colony‐level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of theforaginggene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire antforaginggene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony‐level behavioural variation. Colonies with highersiforexpression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression ofsiforwas also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of theforaginggene may provide an important tool for understanding and predicting the ecological consequences of colony‐level behavioural variation.

     
    more » « less
  2. Abstract

    Biological invasions can lead to the reassembly of communities and understanding and predicting the impacts of exotic species on community structure and functioning are a key challenge in ecology. We investigated the impact of a predatory species of invasive ant,Pheidole megacephala, on the structure and function of a foundational mutualism betweenAcacia drepanolobiumand its associated acacia‐ant community in an East African savanna. Invasion byP. megacephalawas associated with the extirpation of three extrafloral nectar‐dependentCrematogasteracacia ant species and strong increases in the abundance of a competitively subordinate and locally rare acacia ant species,Tetraponera penzigi, which does not depend on host plant nectar. Using a combination of long‐term monitoring of invasion dynamics, observations and experiments, we demonstrate thatP. megacephaladirectly and indirectly facilitatesT. penzigiby reducing the abundance ofT. penzigi’s competitors (Crematogasterspp.), imposing recruitment limitation on these competitors, and generating a landscape of low‐reward host plants that favor colonization and establishment by the strongly dispersingT. penzigi. Seasonal variation in use of host plants byP. megacephalamay further increase the persistence ofT. penzigicolonies in invaded habitat. The persistence of theT. penzigi–A. drepanolobiumsymbiosis in invaded areas afforded host plants some protection against herbivory by elephants (Loxodonta africana), a key browser that reduces tree cover. However, elephant damage onT. penzigi‐occupied trees was higher in invaded than in uninvaded areas, likely owing to reducedT. penzigicolony size in invaded habitats. Our results reveal the mechanisms underlying the disruption of this mutualism and suggest thatP. megacephalainvasion may drive long‐term declines in tree cover, despite the partial persistence of the ant–acacia symbiosis in invaded areas.

     
    more » « less
  3. Abstract

    The fitness consequences of cooperation can vary across an organism’s lifespan. For non-kin groups, especially, social advantages must balance intrinsic costs of cooperating with non-relatives. In this study, we asked how challenging life history stages can promote stable, long-term alliances among unrelated ant queens. We reared single- and multi-queen colonies of the primary polygynous harvester ant,Pogonomyrmex californicus, from founding through the first ten months of colony growth, when groups face high mortality risks. We found that colonies founded by multiple, unrelated queens experienced significant survival and growth advantages that outlasted the colony founding period. Multi-queen colonies experienced lower mortality than single-queen colonies, and queens in groups experienced lower mortality than solitary queens. Further, multi-queen colonies produced workers at a faster rate than did single-queen colonies, even while experiencing lower per-queen worker production costs. Additionally, we characterized ontogenetic changes in the organization of labor, and observed increasing and decreasing task performance diversity by workers and queens, respectively, as colonies grew. This dynamic task allocation likely reflects a response to the changing role of queens as they are increasingly able to delegate risky and costly tasks to an expanding workforce. Faster worker production in multi-queen colonies may beneficially accelerate this behavioral transition from a vulnerable parent–offspring group to a stable, growing colony. These combined benefits of cooperation may facilitate the retention of multiple unrelated queens in mature colonies despite direct fitness costs, providing insight into the evolutionary drivers of stable associations between unrelated individuals.

     
    more » « less
  4. Phenological mismatch can occur when plants and herbivores differentially respond to changing phenological cues, such as temperature or snow melt date. This often shifts herbivore feeding to plant stages of lower quality. How herbivores respond to plant quality may be also mediated by temperature, which could lead to temperature-by-phenology interactions. We examined how aphid abundance and mutualism with ants were impacted by temperature and host plant phenology. In this study system, aphids Aphis asclepiadis colonize flowering stalks of the host plant, Ligusticum porteri. Like other aphids, abundance of this species is dependent on ant protection. To understand how host plant phenology and temperature affect aphid abundance, we used a multiyear observational study and a field experiment. We observed 20 host plant populations over five years (2017–2021), tracking temperature and snow melt date as well as host plant phenology and insect abundance. We found host plant and aphid phenology to differentially respond to temperature and snow melt timing. Early snow melt accelerated host plant phenology to a greater extent than aphid phenology, which was more responsive to temperature. Both the likelihood of aphid colony establishment and ant recruitment were reduced when aphids colonized host plants at post-flowering stages. In 2019, we experimentally accelerated host plant phenology by advancing snow melt date by two weeks. We factorially combined this treatment with open top warming chambers surrounding aphid colonies. Greatest growth occurred for colonies under ambient temperatures when they occurred on host plants at the flowering stage. Altogether, our results suggest that phenological mismatch with host plants can decrease aphid abundance, and this effect is exacerbated by temperature increases and changes to the ant–aphid mutualism. 
    more » « less
  5. Abstract

    The abiotic environment drives species abundances and distributions both directly and indirectly through effects on multi‐trophic species interactions. However, few studies have documented the individual and combined consequences of these direct and indirect effects.

    We studied an ant‐tended aphid along an elevational gradient, where lower elevations were more arid. Hypotheses of stronger species interactions at lower elevations and a greater sensitivity of higher trophic levels to climate led us to predict increased top‐down control of aphids by natural enemies (third trophic level) but even stronger protection from mutualist ants (fourth trophic level) with increasing aridity. As a result, we predicted that mutualism strength and aphid abundance would increase with aridity.

    We documented patterns of aphid abundance and tested for both the direct and multi‐trophic indirect effects of aridity on aphid performance. To do so, we used both observational and manipulative methods across two years in replicate high‐ and low‐elevation valleys, where summer temperatures decreased by 3.7°C and precipitation increased by 27 mm/mo from low to high elevations.

    Aphid colonies were 75% larger in the most (vs. least) arid sites, and this was best explained by changes in interactions with predators and ants. Aphids were unaffected by the direct effects of the abiotic environment or its indirect effects via host plant quality. In contrast, natural enemy effects increased with aridity; under ant exclusion, natural enemies had no effect on aphids in the least arid sites but depressed colony growth by 252% in the most arid sites. Ant activity also increased with aridity, with ants discovering more aphid colonies and experimental baits and allocating more foragers per aphid, although there was no effect of aridity on ant abundance or community composition. Correspondingly, the mutualist services provided by ants increased with aridity; ants provided no benefits to aphids in the least arid sites but doubled colony growth in the most arid sites.

    In summary, an elevational cline in herbivore abundance was driven by a monotonic increase in trophic‐level sensitivity to aridity. These findings illustrate that predicting species responses to climate change will require a multi‐trophic perspective.

     
    more » « less