skip to main content


Title: Development of highly inhomogeneous temperature profile within electrically heated alkali silicate glasses
Abstract

According to Joule’s well-known first law, application of electric field across a homogeneous solid should produce heat uniformly in proportion to the square of electrical current. Here we report strong departure from this expectation for common, homogeneous ionic solids such as alkali silicate glasses when subjected even to moderate fields (~100 V/cm). Unlike electronically conducting metals and semiconductors, with time the heating of ionically conducting glass becomes extremely inhomogeneous with the formation of a nanoscale alkali-depletion region, such that the glass melts near the anode, even evaporates, while remaining solid elsewhere.In situinfrared imaging shows and finite element analysis confirms localized temperatures more than thousand degrees above the remaining sample depending on whether the field is DC or AC. These observations unravel the origin of recently discovered electric field induced softening of glass. The observed highly inhomogeneous temperature profile point to the challenges for the application of Joule’s law to the electrical performance of glassy thin films, nanoscale devices, and similarly-scaled phenomena.

 
more » « less
NSF-PAR ID:
10153478
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Thermal poling is a widely used method for creating glass surfaces with modified structure and altered properties by application of DC voltage. The mechanism of structural change has remained controversial, especially as poling is performed well below the glass transition temperature. Specifically, the role of Joule heating in facilitating structural transformation has remained an open question, conceivably through local heating to temperatures approachingTg. Here, we investigate this possibility directly by in situ measurements of the local glass temperature during poling using infrared imaging. Examination near the anode region reveals only a slight temperature increase (~10°C) above the furnace temperature at the start of poling, and remains a few hundred degrees belowTgthroughout. SIMS analysis revealed a ~1‐µm thick alkali depletion layer next to the anode. XPS analysis of the anode, cathode, and unpoled regions shows complex changes in structure and composition including migration of alkali ions, injection of hydrogen at the anode interface, removal of non‐bridging oxygen, and polymerization of the network via electrolysis. All these changes arise as a result of high electric field (~106 V/cm) produced across the highly resistive depletion layer, and refutes any significant increase in the temperature by Joule heating as the cause of their creation.

     
    more » « less
  2. null (Ed.)
    The PK-4 system is a micro-gravity dusty plasma experiment currently in operation on-board the International Space Station. The experiment utilizes a long DC discharge in neon or argon gases. We apply our 2D particle-in-cell with Monte Carlo collisions discharge simulation to compute local plasma parameters that serve as input data for future dust dynamics models. The simulation includes electrons, Ne+ ions, and Nem metastable atoms in neon gas and their collisions at solid surfaces including secondary electron emission and glass wall charging. On the time scale of the on-board optical imaging, the positive column appears stable and homogeneous. On the other hand, our simulations show that on microsecond time scales the positive column is highly inhomogeneous: ionization waves with phase velocities in the range between 500 m s−1 and 1200 m s−1 dominate the structure. In these waves, the electric field and charged particle densities can reach amplitudes up to 10 times of their average value. Our experiments on ground-based PK-4 replica systems fully support the numerical findings. In the experiment, the direction of the DC current can be alternated, which has been found to favor dust particle chain formation. We discuss possible mechanisms for how the highly oscillatory plasma environment contributes to the dust particle chain formation. 
    more » « less
  3. Abstract

    Despite remarkable advances in characterization techniques of functional materials yielding an ever growing amount of data, the interplay between the physical and chemical phenomena underpinning materials’ functionalities is still often poorly understood. Dimensional reduction techniques have been used to tackle the challenge of understanding materials’ behavior, leveraging the very large amount of data available. Here, we present a method for applying physical and chemical constraints to dimensional reduction analysis, through dimensional stacking. Compared to traditional, uncorrelated techniques, this approach enables a direct and simultaneous assessment of behaviors across all measurement parameters, through stacking of data along specific dimensions as required by physical or chemical correlations. The proposed method is applied to the nanoscale electromechanical relaxation response in (1 − x)PMN-xPT solid solutions, enabling a direct comparison of electric field- and chemical composition-dependent contributors. A poling-like, and a relaxation-like behavior with a domain glass state are identified, and their evolution is tracked across the phase diagram. The proposed dimensional stacking technique, guided by the knowledge of the underlying physics of correlated systems, is valid for the analysis of any multidimensional dataset, opening a spectrum of possibilities for multidisciplinary use.

     
    more » « less
  4. Abstract

    Electric-double-layer (EDL) gated transistors use ions in an electrolyte to induce charge in the channel of the transistor by field-effect. Because a sub-nanometer gap capacitor is created at the electrolyte/channel interface, large capacitance densities (∼µF cm−2) corresponding to high sheet carrier densities (1014cm−2) can be induced, exceeding conventional gate dielectrics by about one order of magnitude. Because it is an interfacial technique, EDL gating is especially effective on two-dimensional (2D) crystals, which—at the monolayer limit—are basically interfaces themselves. Both solid polymer electrolytes and ionic liquids are routinely used as ion-conducting gate dielectrics, and they have provided access to regimes of transport in 2D materials that would be inaccessible otherwise. The technique, now widely used, has enabled the 2D crystal community to study superconductivity, spin- and valleytronics, investigate electrical and structural phase transitions, and create abruptp-njunctions to generate tunneling, among others. In addition to using EDL gating as a tool to investigate properties of the 2D crystals, more recent efforts have emerged to engineer the electrolyte to add new functionality and device features, such as synaptic plasticity, bistability and non-volatility. Example of potential applications include neuromorphic computing and non-volatile memory. This review focuses on using ions forelectrostaticcontrol of 2D crystal transistors both to uncover basic properties of 2D crystals, and also to add new device functionalities.

     
    more » « less
  5. Abstract

    The electrokinetic transport mechanisms of multispecies ions through 3‐D nanoporous rocks with chemical reaction at the solid‐aqueous solution interfaces are investigated. We systematically study the multiphysics transport phenomena by considering either inhomogeneous (local surface charge based on local pH and ion concentrations) or prescribed homogeneous surface charge at solid‐aqueous solution interface while the pores are screened via electric double layers. We develop a lattice Boltzmann numerical framework to solve the set of governing equations (Poisson‐Nernst‐Planck plus Navier–Stokes). Our modeling results reveal that the averaged local electric potential of the nanoporous rock is significantly underestimated (about 83%) when a homogeneous surface charge is prescribed based on the bulk solution properties. It is shown that increasing the porosity of the nanoporous media considerably increases the absolute values and inhomogeneity of the surface charge, which means that while the electric double layers screened the pores, increasing the porosity enhances the ion selectivity of the porous medium. When the scenario with inhomogeneous charge is taken into account, the predicted electroosmotic permeability and tortuosity are higher in comparison with the prescribed homogeneous case. Moreover, we have studied the electrostatic tortuosity, coupling coefficient, and the effective excess charge density of the nanoporous rocks. The results demonstrate that ignoring the inhomogeneity of surface charges may cause erroneous prediction of the ion transport through porous rocks with chemically active surfaces.

     
    more » « less