skip to main content


Title: Local resources of polyribosomes and SER promote synapse enlargement and spine clustering after long-term potentiation in adult rat hippocampus
Abstract

Synapse clustering facilitates circuit integration, learning, and memory. Long-term potentiation (LTP) of mature neurons produces synapse enlargement balanced by fewer spines, raising the question of how clusters form despite this homeostatic regulation of total synaptic weight. Three-dimensional reconstruction from serial section electron microscopy (3DEM) revealed the shapes and distributions of smooth endoplasmic reticulum (SER) and polyribosomes, subcellular resources important for synapse enlargement and spine outgrowth. Compared to control stimulation, synapses were enlarged two hours after LTP on resource-rich spines containing polyribosomes (4% larger than control) or SER (15% larger). SER in spines shifted from a single tubule to complex spine apparatus after LTP. Negligible synapse enlargement (0.6%) occurred on resource-poor spines lacking SER and polyribosomes. Dendrites were divided into discrete synaptic clusters surrounded by asynaptic segments. Spine density was lowest in clusters having only resource-poor spines, especially following LTP. In contrast, resource-rich spines preserved neighboring resource-poor spines and formed larger clusters with elevated total synaptic weight following LTP. These clusters also had more shaft SER branches, which could sequester cargo locally to support synapse growth and spinogenesis. Thus, resources appear to be redistributed to synaptic clusters with LTP-related synapse enlargement while homeostatic regulation suppressed spine outgrowth in resource-poor synaptic clusters.

 
more » « less
Award ID(s):
1707356
NSF-PAR ID:
10153496
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Long-term potentiation (LTP), an increase in synaptic efficacy following high-frequencystimulation, is widely considered a mechanism of learning. LTP involves local remodeling ofdendritic spines and synapses. Smooth endoplasmic reticulum (SER) and endosomal compartmentscould provide local stores of membrane and proteins, bypassing the distant Golgi apparatus. Totest this hypothesis, effects of LTP were compared to control stimulation in rat hippocampal areaCA1 at postnatal day 15 (P15). By two hours, small spines lacking SER increased after LTP, whereaslarge spines did not change in frequency, size, or SER content. Total SER volume decreased afterLTP consistent with transfer of membrane to the added spines. Shaft SER remained more abundantin spiny than aspiny dendritic regions, apparently supporting the added spines. Recyclingendosomes were elevated specifically in small spines after LTP. These findings suggest localsecretory trafficking contributes to LTP-induced synaptogenesis and primes the new spines forfuture plasticity. 
    more » « less
  2. An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories. 
    more » « less
  3. Artificial synaptic devices made from natural biomaterials capable of emulating functions of biological synapses, such as synaptic plasticity and memory functions, are desirable for the construction of brain-inspired neuromorphic computing systems. The metal/dielectric/metal device structure is analogous to the pre-synapse/synaptic cleft/post-synapse structure of the biological neuron, while using natural biomaterials promotes ecologically friendly, sustainable, renewable, and low-cost electronic devices. In this work, artificial synaptic devices made from honey mixed with carbon nanotubes, honey-carbon nanotube (CNT) memristors, were investigated. The devices emulated spike-timing-dependent plasticity, with synaptic weight as high as 500%, and demonstrated a paired-pulse facilitation gain of 800%, which is the largest value ever reported. 206-level long-term potentiation (LTP) and long-term depression (LTD) were demonstrated. A conduction model was applied to explain the filament formation and dissolution in the honey-CNT film, and compared to the LTP/LTD mechanism in biological synapses. In addition, the short-term and long-term memory behaviors were clearly demonstrated by an array of 5 × 5 devices. This study shows that the honey-CNT memristor is a promising artificial synaptic device technology for applications in sustainable neuromorphic computing.

     
    more » « less
  4. Abstract

    Catecholamine neurons of the locus coeruleus (LC) in the dorsal pontine tegmentum innervate the entire neuroaxis, with signaling actions implicated in the regulation of attention, arousal, sleep–wake cycle, learning, memory, anxiety, pain, mood, and brain metabolism. The co‐release of norepinephrine (NE) and dopamine (DA) from LC terminals in the hippocampus plays a role in all stages of hippocampal‐memory processing. This catecholaminergic regulation modulates the encoding, consolidation, retrieval, and reversal of hippocampus‐based memory. LC neurons in awake animals have two distinct firing modes: tonic firing (explorative) and phasic firing (exploitative). These two firing modes exert different modulatory effects on post‐synaptic dendritic spines. In the hippocampus, the firing modes regulate long‐term potentiation (LTP) and long‐term depression, which differentially regulate the mRNA expression and transcription of plasticity‐related proteins (PRPs). These proteins aid in structural alterations of dendritic spines, that is, structural long‐term potentiation (sLTP), via expansion and structural long‐term depression (sLTD) via contraction of post‐synaptic dendritic spines. Given the LC's role in all phases of memory processing, the degeneration of 50% of the LC neuron population occurring in Alzheimer's disease (AD) is a clinically relevant aspect of disease pathology. The loss of catecholaminergic regulation contributes to dysfunction in memory processes along with impaired functions associated with attention and task completion. The multifaceted role of the LC in memory and general task performance and the close correlation of LC degeneration with neurodegenerative disease progression together implicate it as a target for new clinical assessment tools.

     
    more » « less
  5. Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP.

     
    more » « less