skip to main content


Title: Changes to vertebrate tissue stable isotope (δ15N) composition during decomposition
Abstract

During carcass decomposition, tissues undergo biochemical changes: Cells autolyze, enteric microbes ferment cellular products, and tissues degrade. Ultimately, decomposition fluids are released as an ephemeral nitrogen (N) and carbon source to the surrounding environment. However, decomposition fluids are δ15N-enriched relative to body tissues, leading to a disconnect between starting tissue composition and ending fluid composition. It remains largely unknown when or if tissues exhibit δ15N enrichment postmortem despite the importance of tissue stable isotopes to ecologists. To test our hypothesis that tissues would become progressively δ15N-enriched during decay, soft tissues and bone were collected from beaver carcasses at five time points. All soft tissues, including muscle, were significantly δ15N-enriched compared to fresh tissues, but were not as enriched as decomposition fluids. Tissue breakdown is initially dominated by anaerobic autolysis and later by microbe and insect infiltration, and partly explains decay fluid isotopic enrichment. We speculate that after rupture, preferential volatilization of δ15N-depleted compounds (especially ammonia) contributes to further enrichment. These results constrain the timing, rate, and potential mechanisms driving carcass isotopic enrichment during decay, and suggest that found carcasses (e.g., road kill) should be used with caution for inferring trophic ecology as decay can result in significant postmortem δ15N enrichment.

 
more » « less
NSF-PAR ID:
10153498
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The pulsed introduction of dead plant and animal material into soils represents one of the primary mechanisms for returning organic carbon (C) and nitrogen (N) compounds to biogeochemical cycles. Decomposition of animal carcasses provides a high C and N resource that stimulates indigenous environmental microbial communities and introduces non-indigenous, carcass-derived microbes to the environment. However, the dynamics of the coalesced microbial communities, and the relative contributions of environment- and carcass-derived microbes to C and N cycling are unknown. To test whether environment-derived, carcass-derived, or the combined microbial communities exhibited a greater influence on C and N cycling, we conducted controlled laboratory experiments that combined carcass decomposition fluids and soils to simulate carcass decomposition hotspots. We selectively sterilized the decomposition fluid and/or soil to remove microbial communities and create different combinations of environment- and carcass-derived communities and incubated the treatments under three temperatures (10, 20, and 30 °C).

    Results

    Carcass-derived bacteria persisted in soils in our simulated decomposition scenarios, albeit at low abundances. Mixed communities had higher respiration rates at 10 and 30 °C compared to soil or carcass communities alone. Interestingly, at higher temperatures, mixed communities had reduced diversity, but higher respiration, suggesting functional redundancy. Mixed communities treatments also provided evidence that carcass-associated microbes may be contributing to ammonification and denitrification, but that nitrification is still primarily carried out by native soil organisms.

    Conclusions

    Our work yields insight into the dynamics of microbial communities that are coalescing during carcass decomposition, and how they contribute to recycling carcasses in terrestrial ecosystems.

     
    more » « less
  2. Rationale

    It is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values.

    Methods

    We evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years.

    Results

    Tissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰).

    Conclusions

    The effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.

     
    more » « less
  3. Abstract

    Rapid advances in genomic tools for use in ecological contexts and non‐model systems allow unprecedented insight into interactions that occur beyond direct observation. We developed an approach that couples microbial forensics with molecular dietary analysis to identify species interactions and scavenging by invasive rats on native and introduced birds in Hawaii. First, we characterized bacterial signatures of bird carcass decay by conducting 16S rRNA high‐throughput sequencing on chicken (Gallus gallus domesticus) tissues collected over an 11‐day decomposition study in natural Hawaiian habitats. Second, we determined if field‐collected invasive black rats (Rattus rattus;n = 51, stomach and fecal samples) had consumed birds using molecular diet analysis with two independent PCR assays (mitochondrial Cytochrome Oxidase I and Cytochrome b genes) and Sanger sequencing. Third, we characterized the gut microbiome of the same rats using 16S rRNA high‐throughput sequencing and identified 15 bacterial taxa that were (a) detected only in rats that consumed birds (n = 20/51) and (b) were indicative of decaying tissue in the chicken decomposition experiment. We found that 18% of rats (n = 9/51) likely consumed birds as carrion by the presence of bacterial biomarkers of decayed tissue in their gut microbiome. One species of native bird (Myadestes obscurus) and three introduced bird species (Lophura leucomelanos,Meleagris gallopavo,Zosterops japonicus) were detected in the rats’ diets, with individuals from these species (exceptL. nycthemera) likely consumed through scavenging. Bacterial biomarkers of bird carcass decay can persist through rat digestion and may serve as biomarkers of scavenging. Our approach can be used to reveal trophic interactions that are challenging to measure through direct observation.

     
    more » « less
  4. Abstract Objectives

    We compared δ15N and δ13C values from bone and dentine collagen profiles of individuals interred in famine‐related and attritional burials to evaluate whether individuals in medieval London who experienced nutritional stress exhibit enriched nitrogen in bone and tooth tissue. Dentine profiles were evaluated to identify patterns that may be indicative of famine during childhood and were compared with the age of enamel hypoplasia (EH) formation to assess whether isotopic patterns of undernutrition coincide with the timing of physiological stress.

    Materials and Methods

    δ15N and δ13C isotope ratios of bone collagen were obtained from individuals (n= 128) interred in attritional and famine burials from a medieval London cemetery (c. 1120–1539). Temporal sequences of δ15N and δ13C isotope profiles for incrementally forming dentine collagen were obtained from a subset of these individuals (n= 21).

    Results

    Results indicate that individuals from attritional graves exhibit significantly higher δ15N values but no significant differences were found between burial types for the sexes. Analyses of dentine profiles reveal that a lower proportion of famine burials exhibit stable dentine profiles and that several exhibit a pattern of opposing covariance between δ15N and δ13C. EH were also observed to have formed during or after the opposing covariance pattern for some individuals.

    Conclusions

    The results of this study may reflect differences in diet between burial types rather than nutritional stress. Though nutritional stress could not be definitively identified using bone and dentine collagen, the results from dentine analysis support previous observations of biochemical patterns associated with nutritional stress during childhood.

     
    more » « less
  5. Abstract

    Across existing fish host–parasite literature, endoparasites were depleted in δ15N compared to their hosts, while ectoparasitic values demonstrated enrichment, depletion and equivalence relative to their hosts. δ13C enrichment varied extensively for both endo‐ and ectoparasites across taxa and host tissues. In our case study, sea lice (Lepeophtheirus salmonis) were enriched in δ15N relative to their farmed Atlantic salmon (Salmo salar) hosts, although the value contradicted the average that is currently assumed across the animal kingdom. Common fish lice (Argulus foliaceus) did not show a consistent trend in δ15N compared to their wildS. salarhosts. Both parasitic species had a range of δ13C enrichment patterns relative to their hosts. Farmed and wildS. salarhad contrasting δ13C and δ15N, and signals varied across muscle, fin and skin within both groups.L. salmonisandA. foliaceussubsequently had unique δ13C and δ15N, andL. salmonisfrom opposite US coasts differed in δ15N. Given the range of enrichment patterns that were exhibited across the literature and in our study system, trophic dynamics from host to parasite do not conform to traditional prey to predator standards. Furthermore, there does not appear to be a universal enrichment pathway for δ13C nor δ15N in parasitic relationships, which emphasizes the need to investigate host–parasite linkages across species.

     
    more » « less