skip to main content


Title: Modeling and Cost Benefit Analysis to Guide Deployment of POC Diagnostics for Non-typhoidal Salmonella Infections with Antimicrobial Resistance
Abstract

Invasive non-typhoidalSalmonella(NTS) is among the leading causes of blood stream infections in sub-Saharan Africa and other developing regions, especially among pediatric populations. Invasive NTS can be difficult to treat and have high case-fatality rates, in part due to emergence of strains resistant to broad-spectrum antibiotics. Furthermore, improper treatment contributes to increased antibiotic resistance and death. Point of care (POC) diagnostic tests that rapidly identify invasive NTS infection, and differentiate between resistant and non-resistant strains, may greatly improve patient outcomes and decrease resistance at the community level. Here we present for the first time a model for NTS dynamics in high risk populations that can analyze the potential advantages and disadvantages of four strategies involving POC diagnostic deployment, and the resulting impact on antimicrobial treatment for patients. Our analysis strongly supports the use of POC diagnostics coupled with targeted antibiotic use for patients upon arrival in the clinic for optimal patient and public health outcomes. We show that even the use of imperfect POC diagnostics can significantly reduce total costs and number of deaths, provided that the diagnostic gives results quickly enough that patients are likely to return or stay to receive targeted treatment.

 
more » « less
NSF-PAR ID:
10153502
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Living 3D in vitro tissue cultures, grown from immortalized cell lines, act as living sentinels as pathogenic bacteria invade the tissue. The infection is reported through changes in the intracellular dynamics of the sentinel cells caused by the disruption of normal cellular function by the infecting bacteria. Here, the Doppler imaging of infected sentinels shows the dynamic characteristics of infections. InvasiveSalmonella entericaserovar Enteritidis andListeria monocytogenespenetrate through multicellular tumor spheroids, while non-invasive strains ofEscherichia coliandListeria innocuaremain isolated outside the cells, generating different Doppler signatures. Phase distributions caused by intracellular transport display Lévy statistics, introducing a Lévy-alpha spectroscopy of bacterial invasion. Antibiotic treatment of infected spheroids, monitored through time-dependent Doppler shifts, can distinguish drug-resistant relative to non-resistant strains. This use of intracellular Doppler spectroscopy of living tissue sentinels opens a new class of microbial assay with potential importance for studying the emergence of antibiotic resistance.

     
    more » « less
  2. Zhang, Xue (Ed.)
    ABSTRACT

    Bacterial growth and metabolic rates are often closely related. However, under antibiotic selection, a paradox in this relationship arises: antibiotic efficacy decreases when bacteria are metabolically dormant, yet antibiotics select for resistant cells that grow fastest during treatment. That is, antibiotic selection counterintuitively favors bacteria with fast growth but slow metabolism. Despite this apparent contradiction, antibiotic resistant cells have historically been characterized primarily in the context of growth, whereas the extent of analogous changes in metabolism is comparatively unknown. Here, we observed that previously evolved antibiotic-resistant strains exhibited a unique relationship between growth and metabolism whereby nutrient utilization became more efficient, regardless of the growth rate. To better understand this unexpected phenomenon, we used a simplified model to simulate bacterial populations adapting to sub-inhibitory antibiotic selection through successive bottlenecking events. Simulations predicted that sub-inhibitory bactericidal antibiotic concentrations could select for enhanced metabolic efficiency, defined based on nutrient utilization: drug-adapted cells are able to achieve the same biomass while utilizing less substrate, even in the absence of treatment. Moreover, simulations predicted that restoring metabolic efficiency would re-sensitize resistant bacteria exhibiting metabolic-dependent resistance; we confirmed this result using adaptive laboratory evolutions ofEscherichia coliunder carbenicillin treatment. Overall, these results indicate that metabolic efficiency is under direct selective pressure during antibiotic treatment and that differences in evolutionary context may determine both the efficacy of different antibiotics and corresponding re-sensitization approaches.

    IMPORTANCE

    The sustained emergence of antibiotic-resistant pathogens combined with the stalled drug discovery pipelines highlights the critical need to better understand the underlying evolution mechanisms of antibiotic resistance. To this end, bacterial growth and metabolic rates are often closely related, and resistant cells have historically been characterized exclusively in the context of growth. However, under antibiotic selection, antibiotics counterintuitively favor cells with fast growth, and slow metabolism. Through an integrated approach of mathematical modeling and experiments, this study thereby addresses the significant knowledge gap of whether antibiotic selection drives changes in metabolism that complement, and/or act independently, of antibiotic resistance phenotypes.

     
    more » « less
  3. Over the last decade, both early diagnosis and targeted therapy have improved the survival rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic program known as epithelial-mesenchymal transition (EMT), which is mostly latent in adults, can be activated under selective pressures, rendering these cancers resistant to chemo- and immunotherapies. EMT can also drive tumor metastases, which in turn also suppress the cancer-fighting activity of cytotoxic T cells that traffic into the tumor, causing immunotherapy to fail. In this review, we compare and contrast immunotherapy treatment options of non-small cell lung cancer (NSCLC) and triple negative breast cancer (TNBC). We discuss why, despite breakthrough progress in immunotherapy, attaining predictable outcomes in the clinic is mostly an unsolved problem for these tumors. Although these two cancer types appear different based upon their tissues of origin and molecular classification, gene expression indicate that they possess many similarities. Patient tumors exhibit activation of EMT, and resulting stem cell properties in both these cancer types associate with metastasis and resistance to existing cancer therapies. In addition, the EMT transition in both these cancers plays a crucial role in immunosuppression, which exacerbates treatment resistance. To improve cancer-related survival we need to understand and circumvent, the mechanisms through which these tumors become therapy resistant. In this review, we discuss new information and complementary perspectives to inform combination treatment strategies to expand and improve the anti-tumor responses of currently available clinical immune checkpoint inhibitors. 
    more » « less
  4. Abstract

    Sepsis is responsible for the highest economic and mortality burden in critical care settings around the world, prompting the World Health Organization in 2018 to designate it as a global health priority. Despite its high universal prevalence and mortality rate, a disproportionately low amount of sponsored research funding is directed toward diagnosis and treatment of sepsis, when early treatment has been shown to significantly improve survival. Additionally, current technologies and methods are inadequate to provide an accurate and timely diagnosis of septic patients in multiple clinical environments. For improved patient outcomes, a comprehensive immunological evaluation is critical which is comprised of both traditional testing and quantifying recently proposed biomarkers for sepsis. There is an urgent need to develop novel point‐of‐care, low‐cost systems which can accurately stratify patients. These point‐of‐critical‐care sensors should adopt a multiplexed approach utilizing multimodal sensing for heterogenous biomarker detection. For effective multiplexing, the sensors must satisfy criteria including rapid sample to result delivery, low sample volumes for clinical sample sparring, and reduced costs per test. A compendium of currently developed multiplexed micro and nano (M/N)‐based diagnostic technologies for potential applications toward sepsis are presented. We have also explored the various biomarkers targeted for sepsis including immune cell morphology changes, circulating proteins, small molecules, and presence of infectious pathogens. An overview of different M/N detection mechanisms are also provided, along with recent advances in related nanotechnologies which have shown improved patient outcomes and perspectives on what future successful technologies may encompass.

    This article is categorized under:

    Diagnostic Tools > Biosensing

     
    more » « less
  5. High-frequency irreversible electroporation (H-FIRE) is a technique that uses pulsed electric fields that have been shown to ablate malignant cells. In order to evaluate the clinical potential of H-FIRE to treat glioblastoma (GBM), a primary brain tumor, we have studied the effects of high-frequency waveforms on therapy-resistant glioma stem-like cell (GSC) populations. We demonstrate that patient-derived GSCs are more susceptible to H-FIRE damage than primary normal astrocytes. This selectivity presents an opportunity for a degree of malignant cell targeting as bulk tumor cells and tumor stem cells are seen to exhibit similar lethal electric field thresholds, significantly lower than that of healthy astrocytes. However, neural stem cell (NSC) populations also exhibit a similar sensitivity to these pulses. This observation may suggest that different considerations be taken when applying these therapies in younger versus older patients, where the importance of preserving NSC populations may impose different restrictions on use. We also demonstrate variability in threshold among the three patient-derived GSC lines studied, suggesting the need for personalized cell-specific characterization in the development of potential clinical procedures. Future work may provide further useful insights regarding this patient-dependent variability observed that could inform targeted and personalized treatment. 
    more » « less