skip to main content


Title: MEMS-in-the-lens architecture for a miniature high-NA laser scanning microscope
Abstract

Laser scanning microscopes can be miniaturized for in vivo imaging by substituting optical microelectromechanical system (MEMS) devices in place of larger components. The emergence of multifunctional active optical devices can support further miniaturization beyond direct component replacement because those active devices enable diffraction-limited performance using simpler optical system designs. In this paper, we propose a catadioptric microscope objective lens that features an integrated MEMS device for performing biaxial scanning, axial focus adjustment, and control of spherical aberration. The MEMS-in-the-lens architecture incorporates a reflective MEMS scanner between a low-numerical-aperture back lens group and an aplanatic hyperhemisphere front refractive element to support high-numerical-aperture imaging. We implemented this new optical system using a recently developed hybrid polymer/silicon MEMS three-dimensional scan mirror that features an annular aperture that allows it to be coaxially aligned within the objective lens without the need for a beam splitter. The optical performance of the active catadioptric system is simulated and imaging of hard targets and human cheek cells is demonstrated with a confocal microscope that is based on the new objective lens design.

 
more » « less
NSF-PAR ID:
10153508
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Light: Science & Applications
Volume:
8
Issue:
1
ISSN:
2047-7538
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical imaging with nanoscale resolution and a large field of view is highly desirable in many research areas. Unfortunately, it is challenging to achieve these two features simultaneously while using a conventional microscope. An objective lens with a low numerical aperture (NA) has a large field of view but poor resolution. In contrast, a high NA objective lens will have a higher resolution but reduced field of view. In an effort to close the gap between these trade-offs, we introduce an acoustofluidic scanning nanoscope (AS-nanoscope) that can simultaneously achieve high resolution with a large field of view. The AS-nanoscope relies on acoustofluidic-assisted scanning of multiple microsized particles. A scanned 2D image is then compiled by processing the microparticle images using an automated big-data image algorithm. The AS-nanoscope has the potential to be integrated into a conventional microscope or could serve as a stand-alone instrument for a wide range of applications where both high resolution and large field of view are required. 
    more » « less
  2. Abstract

    We present a deep learning framework based on a generative adversarial network (GAN) to perform super-resolution in coherent imaging systems. We demonstrate that this framework can enhance the resolution of both pixel size-limited and diffraction-limited coherent imaging systems. The capabilities of this approach are experimentally validated by super-resolving complex-valued images acquired using a lensfree on-chip holographic microscope, the resolution of which was pixel size-limited. Using the same GAN-based approach, we also improved the resolution of a lens-based holographic imaging system that was limited in resolution by the numerical aperture of its objective lens. This deep learning-based super-resolution framework can be broadly applied to enhance the space-bandwidth product of coherent imaging systems using image data and convolutional neural networks, and provides a rapid, non-iterative method for solving inverse image reconstruction or enhancement problems in optics.

     
    more » « less
  3. The electrostatic MEMS scanner plays an important role in the miniaturization of the microscopic imaging system. We have developed a new two-dimensional (2D) parametrically-resonant MEMS scanner with patterned Au coating (>90% reflectivity at an NIR 785-nm wavelength), for a near-infrared (NIR) fluorescence intraoperative confocal microscopic imaging system with a compact form factor. A silicon-on-insulator (SOI)-wafer based dicing-free microfabrication process has been developed for mass-production with high yield. Based on an in-plane comb-drive configuration, the resonant MEMS scanner performs 2D Lissajous pattern scanning with a large mechanical scanning angle (MSA, ±4°) on each axis at low driving voltage (36 V). A large field-of-view (FOV) has been achieved by using a post-objective scanning architecture of the confocal microscope. We have integrated the new MEMS scanner into a custom-made NIR fluorescence intraoperative confocal microscope with an outer diameter of 5.5 mm at its distal-end. Axial scanning has been achieved by using a piezoelectric actuator-based driving mechanism. We have successfully demonstrated ex vivo 2D imaging on human tissue specimens with up to five frames/s. The 2D resonant MEMS scanner can potentially be utilized for many applications, including multiphoton microendoscopy and wide-field endoscopy. 
    more » « less
  4. Abstract

    Wavefront sensing is the simultaneous measurement of the amplitude and phase of an incoming optical field. Traditional wavefront sensors such as Shack-Hartmann wavefront sensor (SHWFS) suffer from a fundamental tradeoff between spatial resolution and phase estimation and consequently can only achieve a resolution of a few thousand pixels. To break this tradeoff, we present a novel computational-imaging-based technique, namely, the Wavefront Imaging Sensor with High resolution (WISH). We replace the microlens array in SHWFS with a spatial light modulator (SLM) and use a computational phase-retrieval algorithm to recover the incident wavefront. This wavefront sensor can measure highly varying optical fields at more than 10-megapixel resolution with the fine phase estimation. To the best of our knowledge, this resolution is an order of magnitude higher than the current noninterferometric wavefront sensors. To demonstrate the capability of WISH, we present three applications, which cover a wide range of spatial scales. First, we produce the diffraction-limited reconstruction for long-distance imaging by combining WISH with a large-aperture, low-quality Fresnel lens. Second, we show the recovery of high-resolution images of objects that are obscured by scattering. Third, we show that WISH can be used as a microscope without an objective lens. Our study suggests that the designing principle of WISH, which combines optical modulators and computational algorithms to sense high-resolution optical fields, enables improved capabilities in many existing applications while revealing entirely new, hitherto unexplored application areas.

     
    more » « less
  5. In this work, we report a biopsy‐needle compatible rigid probe, capable of performing three‐dimensional (3D) two‐photon optical biopsy. The probe has a small outer diameter of 1.75 mm and fits inside a gauge‐14 biopsy needle to reach internal organs. A carefully designed focus scanning mechanism has been implemented in the rigid probe, which, along with a rapid two‐dimensional MEMS scanner, enables 3D imaging. Fast image acquisition up to 10 frames per second is possible, dramatically reducing motion artifacts duringin vivoimaging. Equipped with a high‐numerical aperture micro‐objective, the miniature rigid probe offers a high two‐photon resolution (0.833 × 6.11 μm, lateral × axial), a lateral field of view of 120 μm, and an axial focus tuning range of 200 μm. In addition to imaging of mouse internal organs and subcutaneous tumorin vivo, first‐of‐its‐kind depth‐resolved two‐photon optical biopsy of an internal organ has been successfully demonstrated on mouse kidneyin vivoandin situ.

     
    more » « less