skip to main content


Title: Automated tracking and analysis of ant trajectories shows variation in forager exploration
Abstract

Determining how ant colonies optimize foraging while mitigating pathogen and predator risks provides insight into how the ants have achieved ecological success. Ants must respond to changing resource conditions, but exploration comes at a cost of higher potential exposure to threats. Fungal infected cadavers surround the main foraging trails of the carpenter antCamponotus rufipes, offering a system to study how foragers behave given the persistent occurrence of disease threats. Studies on social insect foraging behavior typically require many hours of human labor due to the high density of individuals. To overcome this, we developed deep learning based computer vision algorithms to track foraging ants, frame-by-frame, from video footage shot under the natural conditions of a tropical forest floor at night. We found that most foragers walk in straight lines overlapping the same areas as other ants, but there is a subset of foragers with greater exploration. Consistency in walking behavior may protect most ants from infection, while foragers that explore unique portions of the trail may be more likely to encounter fungal spores implying a trade-off between resource discovery and risk avoidance.

 
more » « less
NSF-PAR ID:
10153526
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Circadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity inCamponotus floridanuscarpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains.

    Results

    We found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genesPeriodandShaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found thatVitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression.

    Conclusion

    This study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found inC. floridanus, thus, likely represent a more general phenomenon that warrants further investigation.

     
    more » « less
  2. Differences among groups in collective behavior may arise from responses that all group members share, or instead from differences in the distribution of individuals of particular types. We examined whether the collective regulation of foraging behavior in colonies of the desert red harvester ant ( Pogonomyrmex barbatus ) depends on individual differences among foragers. Foragers lose water while searching for seeds in hot, dry conditions, so colonies regulate foraging activity in response to humidity. In the summer, foraging activity begins in the early morning when humidity is high, and ends at midday when humidity is low. We investigated whether individual foragers within a colony differ in the decision whether to leave the nest on their next foraging trip as humidity decreases, by tracking the foraging trips of marked individuals. We found that individuals did not differ in response to current humidity. No ants were consistently more likely than others to stop foraging when humidity is low. Each day there is a skewed distribution of trip number: only a few individuals make many trips, but most individuals make few trips. We found that from one day to the next, individual foragers do not show any consistent tendency to make a similar number of trips. These results suggest that the differences among colonies in response to humidity, found in previous work, are due to behavioral responses to current humidity that all workers in a colony share, rather than to the distribution within a colony of foragers that differ in response. 
    more » « less
  3. Abstract

    Natural pest control is an alternative to pesticide use in agriculture, and may help to curb insect declines and promote crop production. Nonconsumptive interactions in natural pest control that historically have received far less attention than consumptive interactions, may have distinct impacts on pest damage suppression and may also mediate positive multipredator interactions. Additionally, when nonconsumptive effects are driven by natural enemy aggression, variation in alternative resources for enemies may impact the strength of pest control. Here we study control of the coffee berry borer (CBB),Hypothenemus hampei, by a keystone arboreal ant species,Azteca sericeasur, which exhibits a nonconsumptive effect on CBB by throwing them off coffee plants. We conducted two experiments to investigate: (1) if the strength of this behavior is driven by spatial or temporal variability in scale insect density (an alternative resource thatAztecatends for honeydew), (2) if this behavior mediates positive interactions betweenAztecaand other ground‐foraging ants, and (3) the effect this behavior has on the overall suppression of CBB damage in multipredator scenarios. Our behavioral experiment showed that nearly all interactions betweenAztecaand CBB are nonconsumptive and that this behavior occurs more frequently in the dry season and with higher densities of scale insects on coffee branches. Our multipredator experiment revealed that borers thrown off coffee plants byAztecacan survive and potentially damage other nearby plants but may be suppressed by ground‐foraging ants. Although we found no non‐additive effects betweenAztecaand ground‐foraging ants on overall CBB damage, together, both species resulted in the lowest level of plant damage with the subsequent reduction in “spillover” damage caused by thrown CBB, indicating spatial complementarity between predators. These results present a unique case of natural pest control, in which damage suppression is driven almost exclusively by nonconsumptive natural enemy aggression, as opposed to consumption or prey behavioral changes. Furthermore, our results demonstrate the variability that may occur in nonconsumptive pest control interactions when natural enemy aggressive behavior is impacted by alternative resources, and also show how these nonconsumptive effects can mediate positive interactions between natural enemies to enhance overall crop damage reduction.

     
    more » « less
  4. Abstract

    Deciphering the mechanisms that underpin dietary specialization and niche partitioning is crucial to understanding the maintenance of biodiversity. New world army ants live in species‐rich assemblages throughout the Neotropics and are voracious predators of other arthropods. They are therefore an important and potentially informative group for addressing how diverse predator assemblages partition available prey resources.

    New World army ants are largely specialist predators of other ants, with each species specializing on different ant genera. However, the mechanisms of prey choice are unknown. In this study, we addressed whether the army antEciton hamatum:(a) can detect potential prey odours, (b) can distinguish between odours of prey and non‐prey and (c) can differentiate between different types of odours associated with its prey.

    Using field experiments, we tested the response of army ants to the following four odour treatments: alarm odours, dead ants, live ants and nest material. Each treatment had a unique combination of odour sources and included some movement in two of the treatments (alarm and live ants). Odour treatments were tested for both prey and non‐prey ants. These data were used to determine the degree to whichE. hamatumare using specific prey stimuli to detect potential prey and direct their foraging.

    Army ants responded strongly to odours derived from prey ants, which triggered both increased localized recruitment and slowed advancement of the raid as they targeted the odour source. Odours from non‐prey ants were largely ignored. Additionally, the army ants had the strongest response to the nest material of their preferred prey, with progressively weaker responses across the live ant, dead ant and alarm odours treatments respectively.

    This study reveals that the detection of prey odours, and especially the most persistent odours related to the prey's nest, provides a mechanism for dietary specialization in army ants. If ubiquitous across the Neotropical army ants, then this olfaction‐based ecological specialization may facilitate patterns of resource partitioning and coexistence in these diverse predator communities.

     
    more » « less
  5. Abstract

    Among social insects, colony‐level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of theforaginggene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire antforaginggene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony‐level behavioural variation. Colonies with highersiforexpression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression ofsiforwas also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of theforaginggene may provide an important tool for understanding and predicting the ecological consequences of colony‐level behavioural variation.

     
    more » « less