skip to main content


Title: Three-dimensional cellular automaton simulation of coupled hydrogen porosity and microstructure during solidification of ternary aluminum alloys
Abstract

Hydrogen-induced porosity formed during solidification of aluminum-based alloys has been a major issue adversely affecting the performance of solidification products such as castings, welds or additively manufactured components. A three-dimensional cellular automaton model was developed, for the first time, to predict the formation and evolution of hydrogen porosity coupled with grain growth during solidification of a ternary Al-7wt.%Si-0.3wt.%Mg alloy. The simulation results fully describe the concurrent nucleation and evolution of both alloy grains and hydrogen porosity, yielding the morphology of multiple grains as well as the porosity size and distribution. This model, successfully validated by X-ray micro-tomographic measurements and optical microscopy of a wedge die casting, provides a critical tool for minimizing/controlling porosity formation in solidification products.

 
more » « less
NSF-PAR ID:
10153531
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Purpose AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity. Design/methodology/approach The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity. Findings The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm 3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm 3 . The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producing more Al-Si interfaces that pose thermal resistance. At these interfaces, thermal energy must convert from electrons in the aluminum to phonons in the silicon. The co-located thermal conductivity and crystallographic grain orientation maps confirmed that larger colonies of columnar grains have higher thermal conductivity compared to smaller columnar grains. Practical implications The thermal properties of AlSi10Mg are crucial to heat transfer applications including additively manufactured heatsinks, cold plates, vapor chambers, heat pipes, enclosures and heat exchangers. Additionally, thermal-based nondestructive testing methods require these properties for applications such as defect detection and simulation of L-PBF processes. Industrial standards for L-PBF processes and components can use the data for thermal applications. Originality/value To the best of the authors’ knowledge, this paper is the first to make coupled thermal conductivity maps that were matched to microstructure for L-PBF AlSi10Mg aluminum alloy. This was achieved by a unique in-house thermal conductivity mapping setup and relating the data to local SEM EBSD maps. This provides the first conclusive proof that larger grain sizes can achieve higher thermal conductivity for this processing method and material system. This study also shows that control of the solidification can result in higher thermal conductivity. It was also the first to find that the build substrate (with or without support) has a large effect on thermal conductivity. 
    more » « less
  2. Abstract

    316L stainless steel (316L SS) is a flagship material for structural applications in corrosive environments, having been extensively studied for decades for its favorable balance between mechanical and corrosion properties. More recently, 316L SS has also proven to have excellent printability when parts are produced with additive manufacturing techniques, notably laser powder bed fusion (LPBF). Because of the harsh thermo-mechanical cycles experienced during rapid solidification and cooling, LPBF processing tends to generate unique microstructures. Strong heterogeneities can be found inside grains, including trapped elements, nano-inclusions, and a high density of dislocations that form the so-called cellular structure. Interestingly, LPBF 316L SS not only exhibits better mechanical properties than its conventionally processed counterpart, but it also usually offers much higher resistance to pitting in chloride solutions. Unfortunately, the complexity of the LPBF microstructures, in addition to process-induced defects, such as porosity and surface roughness, have slowed progress toward linking specific microstructural features to corrosion susceptibility and complicated the development of calibrated simulations of pitting phenomena. The first part of this article is dedicated to an in-depth review of the microstructures found in LPBF 316L SS and their potential effects on the corrosion properties, with an emphasis on pitting resistance. The second part offers a perspective of some relevant modeling techniques available to simulate the corrosion of LPBF 316L SS, including current challenges that should be overcome.

     
    more » « less
  3. Abstract

    Many subglacial environments consist of a fine‐grained, deformable sediment bed, known as till, hosting an active hydrological system that routes meltwater. Observations show that the till undergoes substantial shear deformation as a result of the motion of the overlying ice. The deformation of the till, coupled with the dynamics of the hydrological system, is further affected by the substantial strain rate variability in subglacial conditions resulting from spatial heterogeneity at the bed. However, it is not clear if the relatively low magnitudes of strain rates affect the bed structure or its hydrology. We study how laterally varying shear along the ice‐bed interface alters sediment porosity and affects the flux of meltwater through the pore spaces. We use a discrete element model consisting of a collection of spherical, elasto‐frictional grains with water‐saturated pore spaces to simulate the deformation of the granular bed. Our results show that a deforming granular layer exhibits substantial spatial variability in porosity in the pseudo‐static shear regime, where shear strain rates are relatively low. In particular, laterally varying shear at the shearing interface creates a narrow zone of elevated porosity which has increased susceptibility to plastic failure. Despite the changes in porosity, our analysis suggests that the pore pressure equilibrates near‐instantaneously relative to the deformation at critical state, inhibiting potential strain rate dependence of the deformation caused by bed hardening or weakening resulting from pore pressure changes. We relate shear variation to porosity evolution and drainage element formation in actively deforming subglacial tills.

     
    more » « less
  4. Additive manufacturing allows fabrication of custom-shaped thermoelectric materials while minimizing waste, reducing processing steps, and maximizing integration compared to conventional methods. Establishing the process-structure-property relationship of laser additive manufactured thermoelectric materials facilitates enhanced process control and thermoelectric performance. This research focuses on laser processing of bismuth telluride (Bi 2 Te 3 ), a well-established thermoelectric material for low temperature applications. Single melt tracks under various parameters (laser power, scan speed and number of scans) were processed on Bi 2 Te 3 powder compacts. A detailed analysis of the transition in the melting mode, grain growth, balling formation, and elemental composition is provided. Rapid melting and solidification of Bi 2 Te 3 resulted in fine-grained microstructure with preferential grain growth along the direction of the temperature gradient. Experimental results were corroborated with simulations for melt pool dimensions as well as grain morphology transitions resulting from the relationship between temperature gradient and solidification rate. Samples processed at 25 W, 350 mm/s with 5 scans resulted in minimized balling and porosity, along with columnar grains having a high density of dislocations. 
    more » « less
  5. Recent advances pertaining to modeling of grain fragmentation during deformation and recrystallization of polycrystalline metals using viscoplastic self-consistent (VPSC) polycrystal plasticity are combined into a field fluctuations VPSC (FF-VPSC) model. The FF-VPSC model is a higher-order formulation calculating the second moments of lattice rotation rates based on the second moments of stress fields inside grains and resulting intragranular misorientation distributions. The misorientation distributions are used to define a grain fragmentation sub-model for improving predictions of deformation texture evolution and to formulate kinetics sub-models for nucleation as well as to influence the stored energy governing grain growth for the predictions of recrystallization texture evolution. Formation of a copper-like texture in moderately high stacking fault energy (SFE) Cu and a brass-like texture in low SFE brass during rolling to very large strains are successfully predicted using the model. Remarkably, the model also predicts recrystallization textures from the deformation textures of the two metals after adjusting tradeoffs between transition-bands and grain boundary nucleation mechanisms. Additionally, rolling and recrystallization of an interstitial-free steel, tension and recrystallization of AA5182-O, and recrystallization of an additively manufacturing cobalt-based alloy MarM-509 are simulated to predict texture evolution. Through these case studies involving multiple alloys and thermo-mechanical processes we show that, in addition to being predictive with good accuracy, the key advantage of the model lies in its versatility. The FF-VPSC model, simulation results, and insights from the results are presented and discussed in this paper. 
    more » « less