skip to main content

Title: Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction

Magnetic skyrmions are two-dimensional non-collinear spin textures characterized by an integer topological number. Room-temperature skyrmions were recently found in magnetic multilayer stacks, where their stability was largely attributed to the interfacial Dzyaloshinskii–Moriya interaction. The strength of this interaction and its role in stabilizing the skyrmions is not yet well understood, and imaging of the full spin structure is needed to address this question. Here, we use a nitrogen-vacancy centre in diamond to measure a map of magnetic fields produced by a skyrmion in a magnetic multilayer under ambient conditions. We compute the manifold of candidate spin structures and select the physically meaningful solution. We find a Néel-type skyrmion whose chirality is not left-handed, contrary to preceding reports. We propose skyrmion tube-like structures whose chirality rotates through the film thickness. We show that NV magnetometry, combined with our analysis method, provides a unique tool to investigate this previously inaccessible phenomenon.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetic skyrmions are swirling spin structures stabilized typically by the Dyzaloshinskii-Moriya interaction. The existing control of magnetic skyrmions has often relied on the use of an electric current, which may cause overheating in densely packed devices. Here we demonstrate, using phase-field simulations, that an isolated Néel skyrmion in a magnetic nanodisk can be repeatedly created and deleted by voltage-induced strains from a juxtaposed piezoelectric. Such a skyrmion switching is non-volatile, and consumes only ~0.5 fJ per switching which is about five orders of magnitude smaller than that by current-induced spin-transfer-torques. It is found that the strain-mediated skyrmion creation occurs through an intermediate vortex-like spin structure, and that the skyrmion deletion occurs though a homogenous shrinkage during which the Néel wall is temporarily transformed to a vortex-wall. These findings are expected to stimulate experimental research into strain-mediated voltage control of skyrmions, as well as other chiral spin structures for low-power spintronics.

    more » « less
  2. Abstract

    Polar skyrmions are predicted to emerge from the interplay of elastic, electrostatic and gradient energies, in contrast to the key role of the anti-symmetric Dzyalozhinskii-Moriya interaction in magnetic skyrmions. Here, we explore the reversible transition from a skyrmion state (topological charge of −1) to a two-dimensional, tetratic lattice of merons (with topological charge of −1/2) upon varying the temperature and elastic boundary conditions in [(PbTiO3)16/(SrTiO3)16]8membranes. This topological phase transition is accompanied by a change in chirality, from zero-net chirality (in meronic phase) to net-handedness (in skyrmionic phase). We show how scanning electron diffraction provides a robust measure of the local polarization simultaneously with the strain state at sub-nm resolution, while also directly mapping the chirality of each skyrmion. Using this, we demonstrate strain as a crucial order parameter to drive isotropic-to-anisotropic structural transitions of chiral polar skyrmions to non-chiral merons, validated with X-ray reciprocal space mapping and phase-field simulations.

    more » « less
  3. Abstract

    Herein, the experimental observation of micrometer‐scale magnetic skyrmions at room temperature in several Pt/Co‐based thin film heterostructures designed to possess low exchange stiffness, perpendicular magnetic anisotropy, and a modest interfacial Dzyaloshinskii–Moriya interaction (iDMI) is reported. It is found both experimentally and by micromagnetic and analytic modeling that a low exchange stiffness and modest iDMI eliminates the energetic penalty associated with forming domain walls in thin films. When the domain wall energy density approaches negative values, the remanent morphology transitions from a uniform state to labyrinthine stripes. A low exchange stiffness, indicated by a sub‐400 K Curie temperature, is achieved in Pt/Co, Pt/Co/Ni, and Pt/Co/Ni/Re structures by reducing the Co thickness to the ultrathin limit (<0.3 nm). Similar effects occur in thicker Pt/Co/NixCu1−xstructures when the Ni layer is alloyed with Cu. At this transition in domain morphology, skyrmion phases are stabilized by small (<1 mT), perpendicular magnetic fields, and skyrmion motion in response to spin–orbit torque is observed. While the temperature and thickness‐induced morphological phase transitions observed are similar to the well‐studied spin reorientation transition that occurs in the ultrathin limit, the underlying energy balances are substantially modified by the presence of an iDMI.

    more » « less
  4. The stability and resonance spectra associated with a domain wall skyrmion embedded within a Néel skyrmion, forming a 1-kink skyrmion, has been studied using micromagnetic simulations. We show that the 1-kink skyrmion is stable over a wide range of fields at moderate strengths of the Dzyaloshinskii-Moriya interaction. By exciting these structures with a broadband magnetic field excitation, we find complex resonance behavior deviating from that of a pure Néel skyrmion. For out-of-plane excitations, the 1-kink skyrmion demonstrates an additional mode relative to that of the Néel skyrmion at reduced amplitude. These consist of low frequency and high frequency modes associated with both a breathing mode and an oscillation of the embedded domain wall skyrmion. Following an in-plane excitation, both Néel and 1-kink skyrmions exhibit a counterclockwise rotational mode with similar frequencies, as well as a higher frequency mode associated with the interaction of the structure with the ferromagnetic background state. These results may help pave the way for exploration of more complex spin structures for magnetic-based microwave devices. 
    more » « less
  5. Abstract

    Magnetic skyrmions are topologically nontrivial chiral spin textures that have potential applications in next‐generation energy‐efficient and high‐density spintronic devices. In general, the chiral spins of skyrmions are stabilized by the noncollinear Dzyaloshinskii–Moriya interaction (DMI), originating from the inversion symmetry breaking combined with the strong spin–orbit coupling (SOC). Here, the strong SOC from topological insulators (TIs) is utilized to provide a large interfacial DMI in TI/ferrimagnet heterostructures at room temperature, resulting in small‐size (radius ≈ 100 nm) skyrmions in the adjacent ferrimagnet. Antiferromagnetically coupled skyrmion sublattices are observed in the ferrimagnet by element‐resolved scanning transmission X‐ray microscopy, showing the potential of a vanishing skyrmion Hall effect and ultrafast skyrmion dynamics. The line‐scan spin profile of the single skyrmion shows a Néel‐type domain wall structure and a 120 nm size of the 180° domain wall. This work demonstrates the sizable DMI and small skyrmions in TI‐based heterostructures with great promise for low‐energy spintronic devices.

    more » « less