skip to main content


Title: Divergent global-scale temperature effects from identical aerosols emitted in different regions
Abstract

The distribution of anthropogenic aerosols’ climate effects depends on the geographic distribution of the aerosols themselves. Yet many scientific and policy discussions ignore the role of emission location when evaluating aerosols’ climate impacts. Here, we present new climate model results demonstrating divergent climate responses to a fixed amount and composition of aerosol—emulating China’s present-day emissions—emitted from 8 key geopolitical regions. The aerosols’ global-mean cooling effect is fourteen times greater when emitted from the highest impact emitting region (Western Europe) than from the lowest (India). Further, radiative forcing, a widely used climate response proxy, fails as an effective predictor of global-mean cooling for national-scale aerosol emissions in our simulations; global-mean forcing-to-cooling efficacy differs fivefold depending on emitting region. This suggests that climate accounting should differentiate between aerosols emitted from different countries and that aerosol emissions’ evolving geographic distribution will impact the global-scale magnitude and spatial distribution of climate change.

 
more » « less
Award ID(s):
1715557
NSF-PAR ID:
10153577
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
9
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using the Community Earth System Model, with the Community Atmosphere Model version 5.3, we investigate the cloud radiative effects of anthropogenic aerosols emitted from different source regions and global shipping. We also analyze aerosol burdens, cloud condensation nuclei concentration, liquid water path, and ice water path. Due to transboundary transport and sublinearity in the response of clouds to aerosols, the cloud radiative effects of emissions from a given source region are influenced by emissions from other source regions. For example, the shortwave cloud radiative effect of shipping is−0.39 ± 0.03W/m2when other anthropogenic emissions sources are present (the “present‐day background” assumption) compared with−0.60 ± 0.03W/m2when other anthropogenic emissions sources are absent (the “natural background” assumption). In general, the cloud radiative effects are weaker if present‐day background conditions are assumed compared with if natural background conditions are assumed. Assumptions about background conditions should be carefully considered when investigating the climate impacts of aerosol emissions from a given source region.

     
    more » « less
  2. Abstract. Anthropogenic aerosols (AAs) induce global and regionaltropospheric circulation adjustments due to the radiative energyperturbations. The overall cooling effects of AA, which mask a portion ofglobal warming, have been the subject of many studies but still have largeuncertainty. The interhemispheric contrast in AA forcing has also beendemonstrated to induce a major shift in atmospheric circulation. However,the zonal redistribution of AA emissions since start of the 20th century, with anotable decline in the Western Hemisphere (North America and Europe) and acontinuous increase in the Eastern Hemisphere (South Asia and East Asia),has received less attention. Here we utilize four sets of single-model initial-condition large-ensemblesimulations with various combinations of external forcings to quantify theradiative and circulation responses due to the spatial redistribution of AAforcing during 1980–2020. In particular, we focus on the distinct climateresponses due to fossil-fuel-related (FF) aerosols emitted from the Western Hemisphere (WH) versus the Eastern Hemisphere (EH). The zonal (west to east) redistribution of FF aerosol emission since the1980s leads to a weakening negative radiative forcing over the WHmid-to-high latitudes and an enhancing negative radiative forcing over theEH at lower latitudes. Overall, the FF aerosol leads to a northward shift of the Hadley cell and an equatorward shift of the Northern Hemisphere (NH) jet stream. Here, two sets of regional FF simulations (Fix_EastFF1920and Fix_WestFF1920) are performed to separate the roles ofzonally asymmetric aerosol forcings. We find that the WH aerosol forcing,located in the extratropics, dominates the northward shift of the Hadley cell by inducing an interhemispheric imbalance in radiative forcing. On the other hand, the EH aerosol forcing, located closer to the tropics, dominates the equatorward shift of the NH jet stream. The consistent relationship between the jet stream shift and the top-of-atmosphere net solar flux (FSNTOA) gradient suggests that the latter serves as a rule-of-thumb guidance for the expected shift of the NH jet stream. The surface effect of EH aerosol forcing (mainly from low- to midlatitudes)is confined more locally and only induces weak warming over the northeastern Pacific and North Atlantic. In contrast, the WH aerosol reduction leads to a large-scale warming over NH mid-to-high latitudes that largely offsets the cooling over the northeastern Pacific due to EH aerosols. The simulated competing roles of regional aerosol forcings in drivingatmospheric circulation and surface temperature responses during the recentdecades highlight the importance of considering zonally asymmetric forcings(west to east) and also their meridional locations within the NH (tropicalvs. extratropical). 
    more » « less
  3. null (Ed.)
    Abstract. The Arctic is warming 2 to 3 times faster than the global average, partly due to changes in short-lived climate forcers (SLCFs) including aerosols. In order to study the effects of atmospheric aerosols in this warming, recent past (1990–2014) and future (2015–2050) simulations have been carried out using the GISS-E2.1 Earth system model to study the aerosol burdens and their radiative and climate impacts over the Arctic (>60∘ N), using anthropogenic emissions from the Eclipse V6b and the Coupled Model Intercomparison Project Phase 6 (CMIP6) databases, while global annual mean greenhouse gas concentrations were prescribed and kept fixed in all simulations. Results showed that the simulations have underestimated observed surface aerosol levels, in particular black carbon (BC) and sulfate (SO42-), by more than 50 %, with the smallest biases calculated for the atmosphere-only simulations, where winds are nudged to reanalysis data. CMIP6 simulations performed slightly better in reproducing the observed surface aerosol concentrations and climate parameters, compared to the Eclipse simulations. In addition, simulations where atmosphere and ocean are fully coupled had slightly smaller biases in aerosol levels compared to atmosphere-only simulations without nudging. Arctic BC, organic aerosol (OA), and SO42- burdens decrease significantly in all simulations by 10 %–60 % following the reductions of 7 %–78 % in emission projections, with the Eclipse ensemble showing larger reductions in Arctic aerosol burdens compared to the CMIP6 ensemble. For the 2030–2050 period, the Eclipse ensemble simulated a radiative forcing due to aerosol–radiation interactions (RFARI) of -0.39±0.01 W m−2, which is −0.08 W m−2 larger than the 1990–2010 mean forcing (−0.32 W m−2), of which -0.24±0.01 W m−2 was attributed to the anthropogenic aerosols. The CMIP6 ensemble simulated a RFARI of −0.35 to −0.40 W m−2 for the same period, which is −0.01 to −0.06 W m−2 larger than the 1990–2010 mean forcing of −0.35 W m−2. The scenarios with little to no mitigation (worst-case scenarios) led to very small changes in the RFARI, while scenarios with medium to large emission mitigations led to increases in the negative RFARI, mainly due to the decrease in the positive BC forcing and the decrease in the negative SO42- forcing. The anthropogenic aerosols accounted for −0.24 to −0.26 W m−2 of the net RFARI in 2030–2050 period, in Eclipse and CMIP6 ensembles, respectively. Finally, all simulations showed an increase in the Arctic surface air temperatures throughout the simulation period. By 2050, surface air temperatures are projected to increase by 2.4 to 2.6 ∘C in the Eclipse ensemble and 1.9 to 2.6 ∘C in the CMIP6 ensemble, compared to the 1990–2010 mean. Overall, results show that even the scenarios with largest emission reductions leads to similar impact on the future Arctic surface air temperatures and sea-ice extent compared to scenarios with smaller emission reductions, implying reductions of greenhouse emissions are still necessary to mitigate climate change. 
    more » « less
  4. Abstract

    Freshly emitted soot is hydrophobic, but condensation of secondary aerosols and coagulation with other particles modify its hygroscopic optical properties. This conversion is referred to as “aerosol aging.” Many climate models represent this aging process with a fixed aging time scale, whereas in reality, it is a dynamic process that depends on environmental conditions. Here, we implement a dynamic aging parameterization scheme in the regional climate model RegCM4 in place of the fixed aging timescale of 1.15 days (∼27.6 h) and examine its impact on the aerosol life cycle over the Indian subcontinent. The conversion from hydrophobic to hydrophilic aerosol is usually lower than 27.6 h over the entire landmass and lower than 10 h over the polluted Indo‐Gangetic Basin (IGB), with seasonal variability. Due to the implementation of the dynamic aging scheme, the column burden and surface mass concentration of carbonaceous aerosols increase during the drier season (December–February) when washout is negligible. The burden is reduced during the wet season (June–September) due to a more efficient washout except over the IGB, where a reduction in precipitation as a result of radiative feedbacks increases the aerosol concentrations. Over the polluted IGB, surface dimming increases due to the dynamic aging scheme, with the top of the atmosphere forcing remaining mostly unchanged. As a result, atmospheric heating increases by at least 1.2 W/m2. Our results suggest that climate models should incorporate dynamic aging for a more realistic representation of aerosol simulations, especially in highly polluted regions.

     
    more » « less
  5. Abstract

    Absorbing aerosols, like black carbon (BC), give rise to rapid adjustments, and the associated perturbation to the atmospheric temperature structure alters the cloud distribution. The level of scientific understanding of these rapid cloud adjustments—otherwise known as semi-direct effects (SDEs)—is considered low, with models indicating a likely negative (−0.44 to +0.1 Wm−2) forcing. Recent studies suggest this negative SDE is primarily driven by decreases in high-level clouds and enhanced longwave cooling. Here, we investigate the SDE using multiple models driven by observationally constrained fine-mode aerosol forcing without dust and sea salt. Unlike aerosol simulations, which yield a relatively vertically uniform aerosol atmospheric heating profile with significant upper-tropospheric heating, observation-based heating peaks in the lower-troposphere and then decays to zero in the mid-troposphere. We find a significant global annual mean decrease in low- and mid-level clouds, and weaker decreases in high-level clouds, which leads to a positive SDE dominated by shortwave radiation. Thus, in contrast to most studies, we find a robust positive SDE, implying cloud adjustments act to warm the climate system. Sensitivity tests with identical average, but vertically uniform observationally constrained aerosol atmospheric heating result in a negative SDE, due to enhanced longwave cooling as a result of large reductions in high-level clouds. Our results therefore suggest that model simulations lead to a negatively biased SDE, due to an aerosol atmospheric heating profile that is too vertically uniform.

     
    more » « less