skip to main content


Title: Central place foragers select ocean surface convergent features despite differing foraging strategies
Abstract

Discovering the predictors of foraging locations can be challenging, and is often the critical missing piece for interpreting the ecological significance of observed movement patterns of predators. This is especially true in dynamic coastal marine systems, where planktonic food resources are diffuse and must be either physically or biologically concentrated to support upper trophic levels. In the Western Antarctic Peninsula, recent climate change has created new foraging sympatry between Adélie (Pygoscelis adeliae) and gentoo (P. papua) penguins in a known biological hotspot near Palmer Deep canyon. We used this recent sympatry as an opportunity to investigate how dynamic local oceanographic features affect aspects of the foraging ecology of these two species. Simulated particle trajectories from measured surface currents were used to investigate the co-occurrence of convergent ocean features and penguin foraging locations. Adélie penguin diving activity was restricted to the upper mixed layer, while gentoo penguins often foraged much deeper than the mixed layer, suggesting that Adélie penguins may be more responsive to dynamic surface convergent features compared to gentoo penguins. We found that, despite large differences in diving and foraging behavior, both shallow-diving Adélie and deeper-diving gentoo penguins strongly selected for surface convergent features. Furthermore, there was no difference in selectivity for shallow- versus deep-diving gentoo penguins. Our results suggest that these two mesopredators are selecting surface convergent features, however, how these surface signals are related to subsurface prey fields is unknown.

 
more » « less
NSF-PAR ID:
10153601
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Palmer Deep canyon along the West Antarctic Peninsula is a biological hotspot with abundant phytoplankton and krill supporting Adélie and gentoo penguin rookeries at the canyon head. Nearshore studies have focused on physical mechanisms driving primary production and penguin foraging, but less is known about finer‐scale krill distribution and density. We designed two acoustic survey grids paired with conductivity–temperature–depth profiles within adjacent Adélie and gentoo penguin foraging regions near Palmer Station, Antarctica. The grids were sampled from January to March 2019 to assess variability in krill availability and associations with oceanographic properties. Krill density was similar in the two regions, but krill swarms were longer and larger in the gentoo foraging region, which was also less stratified and had lower chlorophyll concentrations. In the inshore zone near penguin colonies, depth‐integrated krill density increased from summer to autumn (January–March) independent of chlorophyll concentration, suggesting a life history‐driven adult krill migration rather than a resource‐driven biomass increase. The daytime depth of krill biomass deepened through the summer and became decoupled from the chlorophyll maximum in March as diel vertical migration magnitude likely increased. Penguins near Palmer Station did not appear to be limited by krill availability during our study, and regional differences in krill depth match the foraging behaviors of the two penguin species. Understanding fine‐scale physical forcing and ecological interactions in coastal Antarctic hotspots is critical for predicting how environmental change will impact these ecosystems.

     
    more » « less
  2. We evaluated annual and regional variation in the dietary niche of Pygoscelis penguins including the sea ice-obligate Adélie penguin ( Pygoscelis adeliae ), and sea ice-intolerant chinstrap ( Pygoscelis antarcticus ) and gentoo ( Pygoscelis papua ) penguins, three species that nest throughout the western Antarctic Peninsula (AP) to test the sea ice trophic interaction hypothesis , which posits that penguin breeding populations with divergent trends, i.e., declining or increasing, are reliant on differing food webs. Our study relies on values of naturally occurring carbon ( 13 C/ 12 C, δ 13 C) and nitrogen ( 15 N/ 14 N, δ 15 N) stable isotopes as integrated proxies of penguin food webs measured over three years at three different breeding colonies. At Anvers Island in the north, where reductions in sea ice and changes in breeding population trends among sympatric sea ice-obligate (Adélie) and sea ice-intolerant (chinstrap and gentoo) penguins have been most notable, our analyses show that all three species of Pygoscelis penguins became more similar isotopically over the reproductive period. By late chick-rearing at Anvers Island, crèched chicks at 5-weeks-old for all species occupied similar trophic positions. Isotopic mixing models indicated that the proportions of prey provisioned by adult penguins to 5-week-old chicks at Anvers Island were generally similar across species within years, consisting primarily of Antarctic krill ( Euphausia superba ). Crèched Adélie chicks had higher δ 13 C and δ 15 N values at Avian and Charcot Islands, southern breeding colonies where sea ice is more prominent and populations of Adélie penguins have increased or remain stable. Trophic position increased with latitude, while the proportions of prey provisioned by Adélie penguin adults to chicks at southern breeding colonies included species typical of high Antarctic marine food webs, especially crystal krill ( Euphausia crystallorophias ). A Bayesian metric for dietary niche width, standard ellipse area (SEA-B), indicated that Pygoscelis penguins with greater population changes in the north had more variability in dietary niche width than stable populations further south. Our results lend insight on marine food web drivers of Pygoscelis penguin reproduction at the regional scale and question the long-standing paradigm that Antarctic krill are the only food web component critical to penguin reproductive survival in this region of the Southern Ocean. 
    more » « less
  3. Abstract

    Predators impact preyscapes (3-D distribution of forage species) by consuming prey according to their abilities or by altering prey behavior as they avoid being consumed. We elucidate prey (Antarctic silverfish[Pleuragramma antarctica] and crystal krill[Euphausia chrystallorophias]) responses to predation associated with the marginal ice zone (MIZ) of the McMurdo Sound, Antarctica, polynya. Prey abundance and habitat was sampled across a 30 × 15 km area by remotely-operated vehicle, and included locations that were accessible (ice edge) or inaccessible (solid fast ice) to air-breathing predators. Prey and habitat sampling coincided with bio-logging of Adélie penguins and observations of other air-breathing predators (penguins, seals, and whales), all of which were competing for the same prey. Adélie penguins dived deeper, and more frequently, near the ice edge. Lowered abundance of krill at the ice edge indicated they were depleted or were responding to increased predation and/or higher light levels along the ice edge. Penguin diet shifted increasingly to silverfish from krill during sampling, and was correlated with the arrival of krill-eating whales. Behaviorally-mediated, high trophic transfer characterizes the McMurdo Sound MIZ, and likely other MIZs, warranting more specific consideration in food web models and conservation efforts.

     
    more » « less
  4. Abstract

    Compound‐specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns inAAisotope fractionation in birds. We conducted a controlledCSIAfeeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individualAAcarbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC‐Dand Δ15NC‐D, respectively). We found that essentialAAδ13C values and sourceAAδ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessentialAAΔ13CC‐Dvalues reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian‐specific nitrogen trophic discrimination factor (TDFGlu‐Phe= 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC‐D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi‐TDFGlu‐Pheequation with the avian‐specificTDFGlu‐Phevalue from our experiment provided estimates that were more ecologically realistic than estimates using a singleTDFGlu‐Pheof 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use ofCSIAin nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.

     
    more » « less
  5. Abstract

    Biological hotspots along the West Antarctic Peninsula (WAP) are characterized by high phytoplankton productivity and biomass as well as spatially focused penguin foraging activity. While unique physical concentrating processes were identified in one of these hotspots, understanding the mechanisms driving the blooms at these locations is of high importance. Factors posited to explain the blooms include the upwelling of macronutrient‐ and micronutrient‐enriched modified Upper Circumpolar Deep Water (mUCDW) and the depth of the mixed layer influencing overall light availability for phytoplankton. Using shipboard trace‐metal clean incubation experiments in three different coastal biological hotspots spanning a north‐south gradient along the WAP, we tested the Canyon Hypothesis (upwelling) for enhanced phytoplankton growth. Diatoms dominated the Southern region, while the Northern region was characterized by a combination of diatoms and cryptophytes. There was ample concentration of macronutrients at the surface and no phytoplankton growth response was detected with the addition of nutrient‐enriched mUCDW water or iron solution to surface waters. For all treatments, addition of mUCDW showed no enhancement in phytoplankton growth, suggesting that local upwelling of nutrient‐enriched deep water in these hotspots was not the main driver of high phytoplankton biomass. Furthermore, the dynamics in the photoprotective pigments were consistent with the light levels used during these incubations showing that phytoplankton are able to photoacclimate rapidly to higher irradiances and that in situ cells are low light adapted. Light availability appears to be the critical variable for the development of hotspot phytoplankton blooms, which in turn supports the highly productive regional food web.

     
    more » « less