skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A role for Vibrio vulnificus PecS during hypoxia
Abstract The genusVibrioincludes serious human pathogens, and mollusks are a significant reservoir for species such asV.vulnificus.Vibriospecies encode PecS, a member of the multiple antibiotic resistance regulator (MarR) family of transcription factors;pecSis divergently oriented topecM, which encodes an efflux pump. We report here thatVibriospecies feature frequent duplications ofpecS-pecMgenes, suggesting evolutionary pressures to respond to distinct environmental situations. The singleV.vulnificusPecS binds two sites within thepecS-pecMintergenic region with Kd = 0.3 ± 0.1 nM, a binding that is attenuated by the ligands xanthine and urate, except when promoter DNA is saturated with PecS. A unique target is found in the intergenic region between genes encoding the nitric oxide sensing transcription factor, NsrR, andnod; thenod-encoded nitric oxide dioxygenase is important for preventing nitric oxide stress. Reporter gene assays show that PecS-mediated repression of gene expression can be relieved in presence of ligand. Since xanthine and urate are produced as part of the oxidative burst during host defenses and under molluscan hypoxia, we propose that these intermediates in the host purine degradation pathway function to promote bacterial survival during hypoxia and oxidative stress.  more » « less
Award ID(s):
1714219
PAR ID:
10153607
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. O'Toole, George (Ed.)
    ABSTRACT Bacterial plant pathogens adjust their gene expression programs in response to environmental signals and host-derived compounds. This ensures that virulence genes or genes encoding proteins, which promote bacterial fitness in a host environment, are expressed only when needed. Such regulation is in the purview of transcription factors, many of which belong to the ubiquitous multiple antibiotic resistance regulator (MarR) protein family. PecS proteins constitute a subset of this large protein family. PecS has likely been distributed by horizontal gene transfer, along with the divergently encoded efflux pump PecM, suggesting its integration into existing gene regulatory networks. Here, we discuss the roles of PecS in the regulation of genes associated with virulence and fitness of bacterial plant pathogens. A comparison of phenotypes and differential gene expression associated with the disruption of pecS shows that functional consequences of PecS integration into existing transcriptional networks are highly variable, resulting in distinct PecS regulons. Although PecS universally binds to the pecS-pecM intergenic region to repress the expression of both genes, binding modes differ. A particularly relaxed sequence preference appears to apply for Dickeya dadantii PecS, perhaps to optimize its integration as a global regulator and regulate genes ancestral to the acquisition of pecS-pecM. Even inducing ligands for PecS are not universally conserved. It appears that PecS function has been optimized to match the unique regulatory needs of individual bacterial species and that its roles must be appreciated in the context of the regulatory networks into which it was recruited. 
    more » « less
  2. Becker, Anke (Ed.)
    ABSTRACT The transcriptional regulator PecS is encoded by select bacterial pathogens. For instance, in the plant pathogen Dickeya dadantii , PecS controls a range of virulence genes, including pectinase genes and the divergently oriented gene pecM , which encodes an efflux pump through which the antioxidant indigoidine is exported. In the plant pathogen Agrobacterium fabrum (formerly named Agrobacterium tumefaciens ), the pecS-pecM locus is conserved. Using a strain of A. fabrum in which pecS has been disrupted, we show here that PecS controls a range of phenotypes that are associated with bacterial fitness. PecS represses flagellar motility and chemotaxis, which are processes that are important for A. fabrum to reach plant wound sites. Biofilm formation and microaerobic survival are reduced in the pecS disruption strain, whereas the production of acyl homoserine lactone (AHL) and resistance to reactive oxygen species (ROS) are increased when pecS is disrupted. AHL production and resistance to ROS are expected to be particularly relevant in the host environment. We also show that PecS does not participate in the induction of vir genes. The inducing ligands for PecS, urate, and xanthine, may be found in the rhizosphere, and they accumulate within the plant host upon infection. Therefore, our data suggest that PecS mediates A. fabrum fitness during its transition from the rhizosphere to the host plant. IMPORTANCE PecS is a transcription factor that is conserved in several pathogenic bacteria, where it regulates virulence genes. The plant pathogen Agrobacterium fabrum is important not only for its induction of crown galls in susceptible plants but also for its role as a tool in the genetic manipulation of host plants. We show here that A. fabrum PecS controls a range of phenotypes, which would confer the bacteria an advantage while transitioning from the rhizosphere to the host plant. This includes the production of signaling molecules, which are critical for the propagation of the tumor-inducing plasmid. A more complete understanding of the infection process may inform approaches by which to treat infections as well as to facilitate the transformation of recalcitrant plant species. 
    more » « less
  3. Becker, Anke (Ed.)
    ABSTRACT Agrobacterium fabrum is a phytopathogen that causes crown gall disease. In the rhizosphere, it encounters plant exudates, some of which are toxic, such as 4-hydroxybenzaldehyde (4HBA). Others, including 4-hydroxybenzoate (4HB), participate in the induction of virulence genes.A. fabrum encodes the transcription factor PecS, which has been reported to enhance bacterial fitness in the rhizosphere. The gene encoding PecS is divergent from pecM, which encodes an efflux pump. PecS represses both pecS and pecM, as evidenced by increased expression in the presence of the PecS ligand urate and by elevated pecM expression in a pecS disruption strain. We report here that the expression ofpecM is induced selectively by 4HBA. Expression of genes encoding enzymes involved in the degradation of 4HB is induced by both 4HBA and 4HB, as expected; however, overexpression ofpecM attenuates the induction by 4HBA, suggesting that 4HBA is a substrate for PecM. Consistent with this inference, untargeted metabolomics shows that 4HBA accumulates intracellularly whenpecM is disrupted. Analysis of PecS by thermal stability assay and DNase I footprinting suggests that 4HBA is not a ligand for PecS. Taken together, our data suggest that 4HBA is a substrate for PecM.IMPORTANCEPlant roots secrete a number of compounds that may be toxic to bacteria residing in the surrounding soil. One such bacterium is Agrobacterium fabrum, which infects plants and induces tumor formation. We show here that an A. fabrum strain in which the efflux pump PecM has been disrupted accumulates 4-hydroxybenzaldehyde, and that this plant root exudate induces the expression of pecM. Our data suggest that PecM and PecS, a transcription factor that regulates pecM expression, both function to promote A. fabrum fitness in the rhizosphere. As a competitive advantage in the rhizosphere is a prerequisite for subsequent plant infection, our data contribute to a more complete understanding of the A. fabrum infection process. 
    more » « less
  4. Biddle, Jennifer F. (Ed.)
    ABSTRACT Marine oxygen-deficient zones (ODZs) are portions of the ocean where intense nitrogen loss occurs primarily via denitrification and anammox. Despite many decades of study, the identity of the microbes that catalyze nitrogen loss in ODZs is still being elucidated. Intriguingly, high transcription of genes in the same family as the nitric oxide dismutase (nod) gene from Methylomirabilota has been reported in the anoxic core of ODZs. Here, we show that the most abundantly transcribednodgenes in the Eastern Tropical North Pacific ODZ belong to a new order (UBA11136) of Alphaproteobacteria,rather than Methylomirabilota as previously assumed. Gammaproteobacteria and Planctomycetia also transcribenod, but at lower relative abundance than UBA11136 in the upper ODZ. Thenod-transcribing Alphaproteobacteria likely use formaldehyde and formate as a source of electrons for aerobic respiration, with additional electrons possibly from sulfide oxidation. They also transcribe multiheme cytochrome (here namedptd) genes for a putative porin-cytochrome protein complex of unknown function, potentially involved in extracellular electron transfer. Molecular oxygen for aerobic respiration may originate from nitric oxide dismutation via cryptic oxygen cycling. Our results implicate Alphaproteobacteria order UBA11136 as a significant player in marine nitrogen loss and highlight their potential in one-carbon, nitrogen, and sulfur metabolism in ODZs.IMPORTANCEIn marine oxygen-deficient zones (ODZs), microbes transform bioavailable nitrogen to gaseous nitrogen, with nitric oxide as a key intermediate. The Eastern Tropical North Pacific contains the world’s largest ODZ, but the identity of the microbes transforming nitric oxide remains unknown. Here, we show that highly transcribed nitric oxide dismutase (nod) genes belong to Alphaproteobacteria of the novel order UBA11136, which lacks cultivated isolates. These Alphaproteobacteria show evidence for aerobic respiration, using oxygen potentially sourced from nitric oxide dismutase, and possess a novel porin-cytochrome protein complex with unknown function. Gammaproteobacteria and Planctomycetia transcribenodat lower levels. Our results pinpoint the microbes mediating a key step in marine nitrogen loss and reveal an unexpected predicted metabolism for marine Alphaproteobacteria. 
    more » « less
  5. Matic, Ivan (Ed.)
    Quorum sensing (QS) is a chemical communication process that bacteria use to track population density and orchestrate collective behaviors. QS relies on the production, accumulation, and group-wide detection of extracellular signal molecules called autoinducers. Vibriophage 882 (phage VP882), a bacterial virus, encodes a homolog of theVibrioQS receptor-transcription factor, called VqmA, that monitors theVibrioQS autoinducer DPO. Phage VqmA binds DPO at high host-cell density and activates transcription of the phage geneqtip. Qtip, an antirepressor, launches the phage lysis program. Phage-encoded VqmA when bound to DPO also manipulates host QS by activating transcription of the host genevqmR. VqmR is a small RNA that controls downstream QS target genes. Here, we sequenceVibrio parahaemolyticusstrain O3:K6 882, the strain from which phage VP882 was initially isolated. The chromosomal region normally encodingvqmRandvqmAharbors a deletion encompassingvqmRand a portion of thevqmApromoter, inactivating that QS system. We discover thatV.parahaemolyticusstrain O3:K6 882 is also defective in its other QS systems, due to a mutation inluxO, encoding the central QS transcriptional regulator LuxO. Both thevqmR-vqmAandluxOmutations lockV.parahaemolyticusstrain O3:K6 882 into the low-cell density QS state. Reparation of the QS defects inV.parahaemolyticusstrain O3:K6 882 promotes activation of phage VP882 lytic gene expression and LuxO is primarily responsible for this effect. Phage VP882-infected QS-competentV.parahaemolyticusstrain O3:K6 882 cells lyse more rapidly and produce more viral particles than the QS-deficient parent strain. We propose that, inV.parahaemolyticusstrain O3:K6 882, constitutive maintenance of the low-cell density QS state suppresses the launch of the phage VP882 lytic cascade, thereby protecting the bacterial host from phage-mediated lysis. 
    more » « less