skip to main content

Title: On the processes influencing rapid intensity changes of tropical cyclones over the Bay of Bengal

We present a numerical investigation of the processes that influenced the contrasting rapid intensity changes in Tropical Cyclones (TC) Phailin and Lehar (2013) over the Bay of Bengal. Our emphasis is on the significant differences in the environments experienced by the TCs within a few weeks and the consequent differences in their organization of vortex-scale convection that resulted in their different rapid intensity changes. The storm-relative proximity, intensity, and depth of the subtropical ridge resulted in the establishment of a low-sheared environment for Phailin and a high-sheared environment for Lehar. Our primary finding here is that in Lehar’s sheared vortex, the juxtaposition in the azimuthal phasing of the asymmetrically distributed downward eddy flux of moist-entropy through the top of the boundary layer, and the radial eddy flux of moist-entropy within the boundary layer in the upshear left-quadrant of Lehar (40–80 km radius) establishes a pathway for the low moist-entropy air to intrude into the vortex from the environment. Conversely, when the azimuthal variations in boundary layer moist-entropy, inflow, and convection are weak in Phailin’s low-sheared environment, the inflow magnitude and radial location of boundary layer convergence relative to the radius of maximum wind dictated the rapid intensification.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This talk presents results from the authors’ recent work on evaluating the role of turbulence and boundary-layer parameterizations on hurricane intensification. We show that observation-based modification of these physical parameterizations significantly improved the HWRF intensity forecast. Turbulent mixing in both the vertical and horizontal directions are found to be crucial for hurricane spin-up dynamics in 3D numerical simulations and HWRF forecasts. Vertical turbulent mixing regulates the inflow strength and the location of boundary-layer convergence that in turns regulates the distribution of deep convection and the intensification of the whole hurricane vortex. Convergence of angular momentum in the boundary layer that is a key component of the hurricane spin-up theory is also found to be regulated by vertical turbulent mixing in connection to the boundary layer inflow. Horizontal turbulent mixing, on the other hand, mainly influences the eddy momentum flux inside the radius of the maximum wind speed in the angular momentum budget. The effect of horizontal turbulent mixing on the convergence of angular momentum is on smoothing the radial gradient of the angular momentum when the horizontal mixing length is large. In a sheared storm, both the vertical and horizontal turbulent mixing affect vortex and shear interaction in terms of the evolution of vortex tilt and boundary-layer recovery processes. 
    more » « less
  2. Abstract

    Ten years of airborne Doppler radar observations are used to study convective updrafts' kinematic and reflectivity structures in tropical cyclone (TC) rainbands. An automated algorithm is developed to identify the strongest rainband updrafts across 12 hurricane‐strength TCs. The selected updrafts are then collectively analyzed by their frequency, radius, azimuthal location (relative to the 200–850 hPa environmental wind shear), structural characteristics, and secondary circulation (radial/vertical) flow pattern. Rainband updrafts become deeper and stronger with increasing radius. A wavenumber‐1 asymmetry arises, showing that in the downshear (upshear) quadrants of the TC, updrafts are more (less) frequent and deeper (shallower). In the downshear quadrants, updrafts primarily have in‐up‐out or in‐up‐in secondary circulation patterns. The in‐up‐out circulation is the most frequent pattern and has the deepest updraft and reflectivity tower. Upshear, the updrafts generally have out‐up‐in or in‐up‐in patterns. The radial flow of the updraft circulations largely follows the vortex‐scale radial flow shear‐induced asymmetry, being increased low‐level inflow (outflow) and midlevel outflow (inflow) in the downshear (upshear) quadrants. It is hypothesized that the convective‐scale circulations are significantly influenced by the vortex‐scale radial flow at the updraft base and top altitudes. Other processes of the convective life cycle, such as bottom‐up decay of aging convective updrafts due to increased low‐level downdrafts, can influence the base altitude and, thus, the base radial flow of the updraft circulation. The findings presented in this study support previous literature regarding convective‐scale patterns of organized rainband convection in a mature, sheared TC.

    more » « less
  3. Abstract

    An idealized, three‐dimensional, 1 km horizontal grid spacing numerical simulation of a rapidly intensifying tropical cyclone is used to extend basic knowledge on the role of mean and eddy momentum transfer on the dynamics of the intensification process. Examination of terms in the tangential and radial velocity tendency equations provides an improved quantitative understanding of the dynamics of the spin‐up process within the inner‐core boundary layer and eyewall regions of the system‐scale vortex. Unbalanced and non‐axisymmetric processes are prominent features of the rapid spin‐up process. In particular, the wind asymmetries, associated in part with the asymmetric deep convection, make a substantive contribution (30%) to the maximum wind speed inside the radius of this maximum. The analysis provides a novel explanation for inflow jets sandwiching the upper‐tropospheric outflow layer which are frequently found in numerical model simulations. In addition, it provides an opportunity to assess the applicability of generalized Ekman balance during rapid vortex spin‐up. The maximum tangential wind occurs within and near the top of the frictional inflow layer and as much as 10 km inside the maximum gradient wind. Spin‐up in the friction layer is accompanied by supergradient winds that exceed the gradient wind by up to 20%. Overall, the results affirm prior work pointing to significant limitations of a purely axisymmetric balance description, for example, gradient balance/Ekman balance, when applied to a rapidly intensifying tropical cyclone.

    more » « less
  4. Abstract

    The axisymmetric structure of the inner-core hurricane boundary layer (BL) during intensification [IN; intensity tendency ≥20 kt (24 h)−1, where 1 kt ≈ 0.5144 m s−1], weakening [WE; intensity tendency <−10 kt (24 h)−1], and steady-state [SS; the remainder] periods are analyzed using composites of GPS dropwindsondes from reconnaissance missions between 1998 and 2015. A total of 3091 dropsondes were composited for analysis below 2.5-km elevation—1086 during IN, 1042 during WE, and 963 during SS. In nonintensifying hurricanes, the low-level tangential wind is greater outside the radius of maximum wind (RMW) than for intensifying hurricanes, implying higher inertial stability (I2) at those radii for nonintensifying hurricanes. Differences in tangential wind structure (and I2) between the groups also imply differences in secondary circulation. The IN radial inflow layer is of nearly equal or greater thickness than nonintensifying groups, and all groups show an inflow maximum just outside the RMW. Nonintensifying hurricanes have stronger inflow outside the eyewall region, likely associated with frictionally forced ascent out of the BL and enhanced subsidence into the BL at radii outside the RMW. Equivalent potential temperatures (θe) and conditional stability are highest inside the RMW of nonintensifying storms, which is potentially related to TC intensity. At greater radii, inflow layer θe is lowest in WE hurricanes, suggesting greater subsidence or more convective downdrafts at those radii compared to IN and SS hurricanes. Comparisons of prior observational and theoretical studies are highlighted, especially those relating BL structure to large-scale vortex structure, convection, and intensity.

    more » « less
  5. Abstract

    Three idealized high‐resolution simulations of tropical storm formation from a weak vortex are analyzed. The three simulations include a case using warm rain microphysics, a similar case in which surface friction is omitted, and a case in which ice microphysics is used. The goal is to understand the mechanisms controlling the intensity and distribution of convection in the formation process in each of these cases. Simulations of convection in weak temperature gradient convective models show that a combination of low to middle tropospheric moist convective instability, the saturation fraction or column relative humidity, and the surface moist entropy flux explain a high percentage of the variance in precipitation and lower tropospheric vertical mass flux. Tropical cyclones differ from other convective environments in that intense frictional convergence occurs in the boundary layer. Adding a measure of convective inhibition to account for this process enables the lower tropospheric mass flux to be predicted even in the core regions of the simulated tropical cyclones. These results are pertinent to the development of more accurate convective parameterizations for large‐scale models.

    more » « less