skip to main content


Title: Keratin 17 identifies the most lethal molecular subtype of pancreatic cancer
Abstract

Although the overall five-year survival of patients with pancreatic ductal adenocarcinoma (PDAC) is dismal, there are survival differences between cases with clinically and pathologically indistinguishable characteristics, suggesting that there are uncharacterized properties that drive tumor progression. Recent mRNA sequencing studies reported gene-expression signatures that define PDAC molecular subtypes that correlate with differences in survival. We previously identified Keratin 17 (K17) as a negative prognostic biomarker in other cancer types. Here, we set out to determine if K17 is as accurate as molecular subtyping of PDAC to identify patients with the shortest survival. K17 mRNA was analyzed in two independent PDAC cohorts for discovery (n = 124) and validation (n = 145). Immunohistochemical localization and scoring of K17 immunohistochemistry (IHC) was performed in a third independent cohort (n = 74). Kaplan-Meier and Cox proportional-hazard regression models were analyzed to determine cancer specific survival differences in low vs. high mRNA K17 expressing cases. We established that K17 expression in PDACs defines the most aggressive form of the disease. By using Cox proportional hazard ratio, we found that increased expression of K17 at the IHC level is also associated with decreased survival of PDAC patients. Additionally, within PDACs of advanced stage and negative surgical margins, K17 at both mRNA and IHC level is sufficient to identify the subgroup with the shortest survival. These results identify K17 as a novel negative prognostic biomarker that could inform patient management decisions.

 
more » « less
NSF-PAR ID:
10153634
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Although pancreatic ductal adenocarcinoma (PDAC) has one of the lowest 5‐year survival rates of all cancers, differences in survival exist between patients with clinically identical characteristics. The authors previously demonstrated that keratin 17 (K17) expression in PDAC, measured by RNA sequencing or immunohistochemistry (IHC), is an independent negative prognostic biomarker. Only 20% of cases are candidates for surgical resection, but most patients are diagnosed by needle aspiration biopsy (NAB). The aims of this study were to determine whether there was a correlation in K17 scores detected in matched NABs and surgical resection tissue sections and whether K17 IHC in NAB cell block specimens could be used as a negative prognostic biomarker in PDAC.

    Methods

    K17 IHC was performed for a cohort of 70 patients who had matched NAB cell block and surgical resection samples to analyze the correlation of K17 expression levels. K17 IHC was also performed in cell blocks from discovery and validation cohorts. Kaplan‐Meier and Cox proportional hazards regression models were analyzed to determine survival differences in cases with different levels of K17 IHC expression.

    Results

    K17 IHC expression correlated in matched NABs and resection tissues. NAB samples were classified as high for K17 when ≥80% of tumor cells showed strong (2+) staining. High‐K17 cases, including stage‐matched cases, had shorter survival.

    Conclusions

    K17 has been identified as a robust and independent prognostic biomarker that stratifies clinical outcomes for cases that are diagnosed by NAB. Testing for K17 also has the potential to inform clinical decisions for optimization of chemotherapeutic interventions.

     
    more » « less
  2. Neoantigens are derived from tumor-specific somatic mutations. Neoantigen-based synthesized peptides have been under clinical investigation to boost cancer immunotherapy efficacy. The promising results prompt us to further elucidate the effect of neoantigen expression on patient survival in breast cancer. We applied Kaplan–Meier survival and multivariable Cox regression models to evaluate the effect of neoantigen expression and its interaction with T-cell activation on overall survival in a cohort of 729 breast cancer patients. Pearson’s chi-squared tests were used to assess the relationships between neoantigen expression and clinical pathological variables. Spearman correlation analysis was conducted to identify correlations between neoantigen expression, mutation load, and DNA repair gene expression. ERCC1, XPA, and XPC were negatively associated with neoantigen expression, while BLM, BRCA2, MSH2, XRCC2, RAD51, CHEK1, and CHEK2 were positively associated with neoantigen expression. Based on the multivariable Cox proportional hazard model, patients with a high level of neoantigen expression and activated T-cell status showed improved overall survival. Similarly, in the T-cell exhaustion and progesterone receptor (PR) positive subgroups, patients with a high level of neoantigen expression showed prolonged survival. In contrast, there was no significant difference in the T-cell activation and PR negative subgroups. In conclusion, neoantigens may serve as immunogenic agents for immunotherapy in breast cancer. 
    more » « less
  3. There is currently no gene expression assay that can assess if premalignant lesions will develop into invasive breast cancer. This study sought to identify biomarkers for selecting patients with a high potential for developing invasive carcinoma in the breast with normal histology, benign lesions, or premalignant lesions. A set of 26-gene mRNA expression profiles were used to identify invasive ductal carcinomas from histologically normal tissue and benign lesions and to select those with a higher potential for future cancer development (ADHC) in the breast associated with atypical ductal hyperplasia (ADH). The expression-defined model achieved an overall accuracy of 94.05% (AUC = 0.96) in classifying invasive ductal carcinomas from histologically normal tissue and benign lesions (n = 185). This gene signature classified cancer development in ADH tissues with an overall accuracy of 100% (n = 8). The mRNA expression patterns of these 26 genes were validated using RT-PCR analyses of independent tissue samples (n = 77) and blood samples (n = 48). The protein expression of PBX2 and RAD52 assessed with immunohistochemistry were prognostic of breast cancer survival outcomes. This signature provided significant prognostic stratification in The Cancer Genome Atlas breast cancer patients (n = 1100), as well as basal-like and luminal A subtypes, and was associated with distinct immune infiltration and activities. The mRNA and protein expression of the 26 genes was associated with sensitivity or resistance to 18 NCCN-recommended drugs for treating breast cancer. Eleven genes had significant proliferative potential in CRISPR-Cas9/RNAi screening. Based on this gene expression signature, the VEGFR inhibitor ZM-306416 was discovered as a new drug for treating breast cancer.

     
    more » « less
  4. Abstract

    With lowering costs of sequencing and genetic profiling techniques, genetic drivers can now be detected readily in tumors but current prognostic models for Natural‐killer/T cell lymphoma (NKTCL) have yet to fully leverage on them for prognosticating patients. Here, we used next‐generation sequencing to sequence 260 NKTCL tumors, and trained a genomic prognostic model (GPM) with the genomic mutations and survival data from this retrospective cohort of patients using LASSO Cox regression. The GPM is defined by the mutational status of 13 prognostic genes and is weakly correlated with the risk‐features in International Prognostic Index (IPI), Prognostic Index for Natural‐Killer cell lymphoma (PINK), and PINK‐Epstein–Barr virus (PINK‐E). Cox‐proportional hazard multivariate regression also showed that the new GPM is independent and significant for both progression‐free survival (PFS, HR: 3.73, 95% CI 2.07–6.73;p < .001) and overall survival (OS, HR: 5.23, 95% CI 2.57–10.65;p = .001) with known risk‐features of these indices. When we assign an additional risk‐score to samples, which are mutant for the GPM, the Harrell's C‐indices of GPM‐augmented IPI, PINK, and PINK‐E improved significantly (p < .001, χ2test) for both PFS and OS. Thus, we report on how genomic mutational information could steer toward better prognostication of NKTCL patients.

     
    more » « less
  5. Abstract

    The prognosis of hepatocellular carcinoma (HCC) after R0 resection is unsatisfactory due to the high rate of recurrence. In this study, we investigated the recurrence‐related RNAs and the underlying mechanism. The long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression data and clinical information of 247 patients who underwent R0 resection patients with HCC were obtained from The Cancer Genome Atlas. Comparing the 1‐year recurrence group (n = 56) with the nonrecurrence group (n = 60), we detected 34 differentially expressed lncRNAs (DElncRNAs), five DEmiRNAs, and 216 DEmRNAs. Of these, three DElncRNAs, hsa‐mir‐150‐5p, and 11 DEmRNAs were selected for constructing the competing endogenous RNA (ceRNA) network. Next, two nomogram models were constructed based separately on the lncRNAs and mRNAs that were further selected by Cox and least absolute shrinkage and selection operator regression analysis. The two nomogram models that showed a high prediction accuracy for disease‐free survival with the concordance indexes at 0.725 and 0.639. Further functional enrichment analysis of DEmRNAs showed that the mRNAs in the ceRNA network and nomogram models were associated with immune pathways. Hence, we constructed a hsa‐mir‐150‐5p‐centric ceRNA network and two effective nomogram prognostic models, and the related RNAs may be useful as potential biomarkers for predicting recurrence in patients with HCC.

     
    more » « less