skip to main content


Title: Energy dissipation in functionally two-dimensional phase transforming cellular materials
Abstract

Phase Transforming Cellular Materials (PXCMs) are periodic cellular materials whose unit cells exhibit multiple stable or meta-stable configurations. Transitions between the various (meta-) stable configurations at the unit cell level enable these materials to exhibit reusable solid state energy dissipation. This energy dissipation arises from the storage and non-equilibrium release of strain energy accompanying the limit point traversals underlying these transitions. The material deformation is fully recoverable, and thus the material can be reused to absorb and dissipate energy multiple times. In this work, we present two designs for functionally two-dimensional PXCMs: theS-typewith four axes of reflectional symmetry based on a square motif and, theT-typewith six axes of symmetry based on a triangular motif. We employ experiments and simulations to understand the various mechanisms that are triggered under multiaxial loading conditions. Our numerical and experimental results indicate that these materials exhibit similar solid state energy dissipation for loads applied along the various axes of reflectional symmetry of the material. The specific energy dissipation capacity of theT-typeis slightly greater and less sensitive to the loading direction than theS-typeunder the most of loading directions. However, both types of material are shown to be very effective in dissipating energy.

 
more » « less
NSF-PAR ID:
10153651
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lithium‐ion batteries have remained a state‐of‐the‐art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high‐voltage cathodes represent promising candidates for next‐generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high‐performing single‐ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room‐temperature conductivity of 1.5 × 10−4S cm−1, and exceptional selectivity for Li‐ion conduction (tLi+= 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi‐solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte.

     
    more » « less
  2. Abstract Carbon micro/nanolattice materials, defined as three-dimensional (3D) architected metamaterials made of micro/nanoscale carbon constituents, have demonstrated exceptional mechanical properties, including ultrahigh specific strength, stiffness, and extensive deformability through experiments and simulations. The ductility of these carbon micro/nanolattices is also important for robust performance. In this work, we present a novel design of using reversible snap-through instability to engineer energy dissipation in 3D graphene nanolattices. Inspired by the shell structure of flexible straws, we construct a type of graphene counterpart via topological design and demonstrate its associated snap-through instability through molecular dynamics (MD) simulations. One-dimensional (1D) straw-like carbon nanotube (SCNT) and 3D graphene nanolattices are constructed from a unit cell. These graphene nanolattices possess multiple stable states and are elastically reconfigurable. A theoretical model of the 1D bi-stable element chain is adopted to understand the collective deformation behavior of the nanolattice. Reversible pseudoplastic behavior with a finite hysteresis loop is predicted and further validated via MD. Enhanced by these novel energy dissipation mechanisms, the 3D graphene nanolattice shows good tolerance of crack-like flaws and is predicted to approach a specific energy dissipation of 233 kJ/kg in a loading cycle with no permanent damage (one order higher than the energy absorbed by carbon steel at failure, 16 kJ/kg). This study provides a novel mechanism for 3D carbon nanolattice to dissipate energy with no accumulative damage and improve resistance to fracture, broadening the promising application of 3D carbon in energy absorption and programmable materials. 
    more » « less
  3. null (Ed.)
    The unconventional clathrates, Cs 8 Zn 18 Sb 28 and Cs 8 Cd 18 Sb 28 , were synthesized and reinvestigated. These clathrates exhibit unique and extensive superstructural ordering of the clathrate-I structure that was not initially reported. Cs 8 Cd 18 Sb 28 orders in the Ia 3̄ d space group (no. 230) with 8 times larger volume of the unit cell in which most framework atoms segregate into distinct Cd and Sb sites. The structure of Cs 8 Zn 18 Sb 28 is much more complicated, with an 18-fold increase of unit cell volume accompanied by significant reduction of symmetry down to P 2 (no. 3) monoclinic space group. This structure was revealed by a combination of synchrotron X-ray diffraction and electron microscopy techniques. A full solid solution, Cs 8 Zn 18−x Cd x Sb 28 , was also synthesized and characterized. These compounds follow Vegard's law in regard to their primitive unit cell sizes and melting points. Variable temperature in situ synchrotron powder X-ray diffraction was used to study the formation and melting of Cs 8 Zn 18 Sb 28 . Due to the heavy elements comprising clathrate framework and the complex structural ordering, the synthesized clathrates exhibit ultralow thermal conductivities, all under 0.8 W m −1 K −1 at room temperature. Cs 8 Zn 9 Cd 9 Sb 28 and Cs 8 Zn 4.5 Cd 13.5 Sb 28 both have total thermal conductivities of 0.49 W m −1 K −1 at room temperature, among the lowest reported for any clathrate. Cs 8 Zn 18 Sb 28 has typical p-type semiconducting charge transport properties, while the remaining clathrates show unusual n–p transitions or sharp increases of thermopower at low temperatures. Estimations of the bandgaps as activation energy for resistivity dependences show an anomalous widening and then shrinking of the bandgap with increasing Cd-content. 
    more » « less
  4. By mimicking biomimetic synaptic processes, the success of artificial intelligence (AI) has been astounding with various applications such as driving automation, big data analysis, and natural-language processing.[1-4] Due to a large quantity of data transmission between the separated memory unit and the logic unit, the classical computing system with von Neumann architecture consumes excessive energy and has a significant processing delay.[5] Furthermore, the speed difference between the two units also causes extra delay, which is referred to as the memory wall.[6, 7] To keep pace with the rapid growth of AI applications, enhanced hardware systems that particularly feature an energy-efficient and high-speed hardware system need to be secured. The novel neuromorphic computing system, an in-memory architecture with low power consumption, has been suggested as an alternative to the conventional system. Memristors with analog-type resistive switching behavior are a promising candidate for implementing the neuromorphic computing system since the devices can modulate the conductance with cycles that act as synaptic weights to process input signals and store information.[8, 9]

    The memristor has sparked tremendous interest due to its simple two-terminal structure, including top electrode (TE), bottom electrode (BE), and an intermediate resistive switching (RS) layer. Many oxide materials, including HfO2, Ta2O5, and IGZO, have extensively been studied as an RS layer of memristors. Silicon dioxide (SiO2) features 3D structural conformity with the conventional CMOS technology and high wafer-scale homogeneity, which has benefited modern microelectronic devices as dielectric and/or passivation layers. Therefore, the use of SiO2as a memristor RS layer for neuromorphic computing is expected to be compatible with current Si technology with minimal processing and material-related complexities.

    In this work, we proposed SiO2-based memristor and investigated switching behaviors metallized with different reduction potentials by applying pure Cu and Ag, and their alloys with varied ratios. Heavily doped p-type silicon was chosen as BE in order to exclude any effects of the BE ions on the memristor performance. We previously reported that the selection of TE is crucial for achieving a high memory window and stable switching performance. According to the study which compares the roles of Cu (switching stabilizer) and Ag (large switching window performer) TEs for oxide memristors, we have selected the TE materials and their alloys to engineer the SiO2-based memristor characteristics. The Ag TE leads to a larger memory window of the SiO2memristor, but the device shows relatively large variation and less reliability. On the other hand, the Cu TE device presents uniform gradual switching behavior which is in line with our previous report that Cu can be served as a stabilizer, but with small on/off ratio.[9] These distinct performances with Cu and Ag metallization leads us to utilize a Cu/Ag alloy as the TE. Various compositions of Cu/Ag were examined for the optimization of the memristor TEs. With a Cu/Ag alloying TE with optimized ratio, our SiO2based memristor demonstrates uniform switching behavior and memory window for analog switching applications. Also, it shows ideal potentiation and depression synaptic behavior under the positive/negative spikes (pulse train).

    In conclusion, the SiO2memristors with different metallization were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of memristor, we integrated Cu, Ag and Cu/Ag alloy as TEs and compared the switch characteristics. Our encouraging results clearly demonstrate that SiO2with Cu/Ag is a promising memristor device with synaptic switching behavior in neuromorphic computing applications.

    Acknowledgement

    This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    References

    [1] Younget al.,IEEE Computational Intelligence Magazine,vol. 13, no. 3, pp. 55-75, 2018.

    [2] Hadsellet al.,Journal of Field Robotics,vol. 26, no. 2, pp. 120-144, 2009.

    [3] Najafabadiet al.,Journal of Big Data,vol. 2, no. 1, p. 1, 2015.

    [4] Zhaoet al.,Applied Physics Reviews,vol. 7, no. 1, 2020.

    [5] Zidanet al.,Nature Electronics,vol. 1, no. 1, pp. 22-29, 2018.

    [6] Wulfet al.,SIGARCH Comput. Archit. News,vol. 23, no. 1, pp. 20–24, 1995.

    [7] Wilkes,SIGARCH Comput. Archit. News,vol. 23, no. 4, pp. 4–6, 1995.

    [8] Ielminiet al.,Nature Electronics,vol. 1, no. 6, pp. 333-343, 2018.

    [9] Changet al.,Nano Letters,vol. 10, no. 4, pp. 1297-1301, 2010.

    [10] Qinet al., Physica Status Solidi (RRL) - Rapid Research Letters, pssr.202200075R1, In press, 2022.

     
    more » « less
  5. null (Ed.)
    Abstract: Solid-state ion conduction (SSIC) is a mechanism of ionic current that has garnered increasing attention for applications in all-solid-state batteries and atomic switches. The Ag/S SSIC system in β-Ag S, possessing the highest ionic conductivity of any known material, provides a unique opportunity to better understand the fundamental nature of SSIC. β-Ag S is topographically similar to binary perovskites except that it is cubic, leading to isotropic SSIC exceeding 4 S/cm. The dynamic nature of SSIC makes it difficult to study by observational means, where inherent time-averaging obscures correlations among atomic transit routes.Molecular dynamics (MD) is a tool ideally suited for gaining insight into large atomic systems with subnanosecond time resolutions. However, traditional MD potentials lack a description of bond-breaking/forming reactions, which are an essential aspect of SSIC and related memristic properties. This limitation can be overcome by using a reactive force field (ReaxFF), which enables the simulation of bonding reactions with DFT-level accuracy. In this study, we present a ReaxFF force field for the Ag/S system, optimized for simulating SSIC in β-Ag S. Training data consisted of crystal structures, Bader partial charges, and energies of various Ag/S clusters calculated at the DFT-level. Energies were obtained with Gaussian 16, using the PBEh1PBE hybrid functional with a triple-zeta correlation-consistent basis set. Multiobjective parameter optimization was accomplished with an updated form of the Genetic Algorithm for Reactive Force Fields (GARFfield). The force field was validated with potential energy and ion conductivity calculations, along with relevant structural features. Results were compared with equivalent simulations from other established potentials. This new ReaxFF force field will enable modeling of realistic SSIC configurations for Ag/S-based materials and provides a viable approach for extending ReaxFF to other SSIC systems in the future. This work was supported by the National Science Foundation under grant #2025319. 
    more » « less