skip to main content

Title: Robust Microfabrication of Highly Parallelized Three-Dimensional Microfluidics on Silicon
Abstract

We present a new, robust three dimensional microfabrication method for highly parallel microfluidics, to improve the throughput of on-chip material synthesis by allowing parallel and simultaneous operation of many replicate devices on a single chip. Recently, parallelized microfluidic chips fabricated in Silicon and glass have been developed to increase the throughput of microfluidic materials synthesis to an industrially relevant scale. These parallelized microfluidic chips require large arrays (>10,000) of Through Silicon Vias (TSVs) to deliver fluid from delivery channels to the parallelized devices. Ideally, these TSVs should have a small footprint to allow a high density of features to be packed into a single chip, have channels on both sides of the wafer, and at the same time minimize debris generation and wafer warping to enable permanent bonding of the device to glass. Because of these requirements and challenges, previous approaches cannot be easily applied to produce three dimensional microfluidic chips with a large array of TSVs. To address these issues, in this paper we report a fabrication strategy for the robust fabrication of three-dimensional Silicon microfluidic chips consisting of a dense array of TSVs, designed specifically for highly parallelized microfluidics. In particular, we have developed a two-layer TSV more » design that allows small diameter vias (d < 20 µm) without sacrificing the mechanical stability of the chip and a patterned SiO2etch-stop layer to replace the use of carrier wafers in Deep Reactive Ion Etching (DRIE). Our microfabrication strategy allows >50,000 (d = 15 µm) TSVs to be fabricated on a single 4” wafer, using only conventional semiconductor fabrication equipment, with 100% yield (M = 16 chips) compared to 30% using previous approaches. We demonstrated the utility of these fabrication strategies by developing a chip that incorporates 20,160 flow focusing droplet generators onto a single 4” Silicon wafer, representing a 100% increase in the total number of droplet generators than previously reported. To demonstrate the utility of this chip for generating pharmaceutical microparticle formulations, we generated 5–9 µm polycaprolactone particles with a CV < 5% at a rate as high as 60 g/hr (>1 trillion particles/hour).

« less
Authors:
; ;
Publication Date:
NSF-PAR ID:
10153652
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid progress of droplet microfluidics and its wide range of applications have created a high demand for the mass fabrication of low-cost, high throughput droplet generator chips aiding both biomedical research and commercial usage. Existing polymer or glass based droplet generators have failed to successfully meet this demand which generates the need for the development of an alternate prototyping technique. This work reports the design, fabrication and characterization of a mass manufacturable thermoplastic based microfluidic droplet generator on cyclic olefin copolymer (COC). COC chips with feature size as low as 20 µm have been efficiently fabricated using injection molding technology leading to a high production of inexpensive droplet generators. The novelty of this work lies in reoptimising surface treatment and solvent bonding methods to produce closed COC microchannels with sufficiently hydrophobic (contact angle of 120°) surfaces. These COC based droplet generators were shown to generate stable monodisperse droplets at a rate of 1300 droplets/second in the dripping regime. These new mass manufacturable, disposable and cheap COC droplet generators can be custom designed to cater to the rapidly increasing biomedical and clinical applications of droplet microfluidics.
  2. Unconventional shale or tight oil/gas reservoirs that have micro-/nano-sized dual-scale matrix pore throats with micro-fractures may result in different fluid flow mechanisms compared with conventional oil/gas reservoirs. Microfluidic models, as a potential powerful tool, have been used for decades for investigating fluid flow at the pore-scale in the energy field. However, almost all microfluidic models were fabricated by using etching methods and very few had dual-scale micro-/nanofluidic channels. Herein, we developed a lab-based, quick-processing and cost-effective fabrication method using a lift-off process combined with the anodic bonding method, which avoids the use of any etching methods. A dual-porosity matrix/micro-fracture pattern, which can mimic the topology of shale with random irregular grain shapes, was designed with the Voronoi algorithm. The pore channel width range is 3 μm to 10 μm for matrices and 100–200 μm for micro-fractures. Silicon is used as the material evaporated and deposited onto a glass wafer and then bonded with another glass wafer. The channel depth is the same (250 nm) as the deposited silicon thickness. By using an advanced confocal laser scanning microscopy (CLSM) system, we directly visualized the pore level flow within micro/nano dual-scale channels with fluorescent-dyed water and oil phases. We found a seriousmore »fingering phenomenon when water displaced oil in the conduits even if water has higher viscosity and the residual oil was distributed as different forms in the matrices, micro-fractures and conduits. We demonstrated that different matrix/micro-fracture/macro-fracture geometries would cause different flow patterns that affect the oil recovery consequently. Taking advantage of such a micro/nano dual-scale ‘shale-like’ microfluidic model fabricated by a much simpler and lower-cost method, studies on complex fluid flow behavior within shale or other tight heterogeneous porous media would be significantly beneficial.« less
  3. Microfluidic cell sorters have shown great potential to revolutionize the current technique of enriching rare cells. In the past decades, different microfluidic cell sorters have been developed by researchers for separating circulating tumor cells, T-cells, and other biological markers from blood samples. However, it typically takes months or even years to design these microfluidic cell sorters by hand. Thus, researchers tend to use computer simulation (usually finite element analysis) to verify their designs before fabrication and experimental testing. Despite this, conducting precision finite element analysis of microfluidic devices is computationally expensive and labor-intensive. To address this issue, we recently presented a microfluidic simulation method that can simulate the behavior of fluids and particles in some typical microfluidic chips instantaneously. Our method decomposes the chip into channels and intersections. The behavior of fluid in each channel is determined by leveraging analogies with electronic circuits, and the behavior of fluid and particles in each intersection is determined by querying a database containing 92,934 pre-simulated channel intersections. While this approach successfully predicts the behavior of complex microfluidic chips in a fraction of the time required by existing techniques, we nonetheless identified three major limitations with this method: (1) the library of pre-simulated channelmore »intersections is unnecessarily large (only 2,072 of 92,934 were used); (2) the library contains only cross-shaped intersections (and no other intersection geometries); and (3) the range of fluid flow rates in the library is limited to 0 to 2 cm/s. To address these deficiencies, in this work we present an improved method for instantaneously simulating the trajectories of particles in microfluidic chips. Firstly, inspired by dynamic programming, our new method optimizes the generation of pre-simulated intersection units and avoids generating unnecessary simulations. Secondly, we constructed a cloud database (http://cloud.microfluidics.cc) to share our pre-simulated results and to let users become contributors and upload their simulation results into the cloud database as a benefit to the whole microfluidic simulation community. Lastly, we investigated the impact of different channel angles and different fluid flow rates on predicting the trajectories of particles. We found a wide range of device geometries and flow rates over which our existing simulation results can be extended without having to perform additional simulations. Our method should accelerate the simulation of particles in microfluidic chips and enable researchers to design new microfluidic cell sorter chips more efficiently.« less
  4. Fabrication of microfluidic devices by photolithography generally requires specialized training and access to a cleanroom. As an alternative, 3D printing enables cost-effective fabrication of microdevices with complex features that would be suitable for many biomedical applications. However, commonly used resins are cytotoxic and unsuitable for devices involving cells. Furthermore, 3D prints are generally refractory to elastomer polymerization such that they cannot be used as master molds for fabricating devices from polymers ( e.g. polydimethylsiloxane, or PDMS). Different post-print treatment strategies, such as heat curing, ultraviolet light exposure, and coating with silanes, have been explored to overcome these obstacles, but none have proven universally effective. Here, we show that deposition of a thin layer of parylene, a polymer commonly used for medical device applications, renders 3D prints biocompatible and allows them to be used as master molds for elastomeric device fabrication. When placed in culture dishes containing human neurons, regardless of resin type, uncoated 3D prints leached toxic material to yield complete cell death within 48 hours, whereas cells exhibited uniform viability and healthy morphology out to 21 days if the prints were coated with parylene. Diverse PDMS devices of different shapes and sizes were easily cast from parylene-coated 3D printedmore »molds without any visible defects. As a proof-of-concept, we rapid prototyped and tested different types of PDMS devices, including triple chamber perfusion chips, droplet generators, and microwells. Overall, we suggest that the simplicity and reproducibility of this technique will make it attractive for fabricating traditional microdevices and rapid prototyping new designs. In particular, by minimizing user intervention on the fabrication and post-print treatment steps, our strategy could help make microfluidics more accessible to the biomedical research community.« less
  5. Microfluidic devices enable the production of uniform double emulsions with control over droplet size and shell thickness. However, the limited production rate of microfluidic devices precludes the use of monodisperse double emulsions for industrial-scale applications, which require large quantities of droplets. To increase throughput, devices can be parallelized to contain many dropmakers operating simultaneously in one chip, but this is challenging to do for double emulsion dropmakers. Production of double emulsions requires dropmakers to have both hydrophobic and hydrophilic channels, requiring spatially precise patterning of channel surface wettability. Precise wettability patterning is difficult for devices containing multiple dropmakers, posing a significant challenge for parallelization. In this paper, we present a multilayer dropmaker geometry that greatly simplifies the process of producing microfluidic devices with excellent spatial control over channel wettability. Wettability patterning is achieved through the independent functionalization of channels in each layer prior to device assembly, rendering the dropmaker with a precise step between hydrophobic and hydrophilic channels. This device geometry enables uniform wettability patterning of parallelized dropmakers, providing a scalable approach for the production of double emulsions.