skip to main content


Title: Photoswitchable Spasers with a Plasmonic Core and Photoswitchable Fluorescent Proteins
Abstract

Photoswitchable fluorescent proteins (PFPs) that can change fluorescence color upon excitation have revolutionized many applications of light such as tracking protein movement, super-resolution imaging, identification of circulating cells, and optical data storage. Nevertheless, the relatively weak fluorescence of PFPs limits their applications in biomedical imaging due to strong tissue autofluorecence background. Conversely, plasmonic nanolasers, also called spasers, have demonstrated potential to generate super-bright stimulated emissions even inside single cells. Nevertheless, the development of photoswitchable spasers that can shift their stimulated emission color in response to light is challenging. Here, we introduce the novel concept of spasers using a PFP layer as the active medium surrounding a plasmonic core. The proof of principle was demonstrated by synthesizing a multilayer nanostructure on the surface of a spherical gold core, with a non-absorbing thin polymer shell and the PFP Dendra2 dispersed in the matrix of a biodegradable polymer. We have demonstrated photoswitching of spontaneous and stimulated emission in these spasers below and above the spasing threshold, respectively, at different spectral ranges. The plasmonic core of the spasers serves also as a photothermal (and potentially photoacoustic) contrast agent, allowing for photothermal imaging of the spasers. These results suggest that multimodal photoswitchable spasers could extend the traditional applications of spasers and PFPs in laser spectroscopy, multicolor cytometry, and theranostics with the potential to track, identify, and kill abnormal cells in circulation.

 
more » « less
NSF-PAR ID:
10153653
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Multicolor carbon dots (CDs) have been developed recently and demonstrate great potential in bio-imaging, sensing, and LEDs. However, the fluorescence mechanism of their tunable colors is still under debate, and efficient separation methods are still challenging. Herein, we synthesized multicolor polymeric CDs through solvothermal treatment of citric acid and urea in formamide. Automated reversed-phase column separation was used to achieve fractions with distinct colors, including blue, cyan, green, yellow, orange and red. This work explores the physicochemical properties and fluorescence origins of the red, green, and blue fractions in depth with combined experimental and computational methods. Three dominant fluorescence mechanism hypotheses were evaluated by comparing time-dependent density functional theory and molecular dynamics calculation results to measured characteristics. We find that blue fluorescence likely comes from embedded small molecules trapped in carbonaceous cages, while pyrene analogs are the most likely origin for emission at other wavelengths, especially in the red. Also important, upon interaction with live cells, different CD color fractions are trafficked to different sub-cellular locations. Super-resolution imaging shows that the blue CDs were found in a variety of organelles, such as mitochondria and lysosomes, while the red CDs were primarily localized in lysosomes. These findings significantly advance our understanding of the photoluminescence mechanism of multicolor CDs and help to guide future design and applications of these promising nanomaterials. 
    more » « less
  2. Abstract

    Super-resolution fluorescence microscopy methods enable the characterization of nanostructures in living and fixed biological tissues. However, they require the adjustment of multiple imaging parameters while attempting to satisfy conflicting objectives, such as maximizing spatial and temporal resolution while minimizing light exposure. To overcome the limitations imposed by these trade-offs, post-acquisition algorithmic approaches have been proposed for resolution enhancement and image-quality improvement. Here we introduce the task-assisted generative adversarial network (TA-GAN), which incorporates an auxiliary task (for example, segmentation, localization) closely related to the observed biological nanostructure characterization. We evaluate how the TA-GAN improves generative accuracy over unassisted methods, using images acquired with different modalities such as confocal, bright-field, stimulated emission depletion and structured illumination microscopy. The TA-GAN is incorporated directly into the acquisition pipeline of the microscope to predict the nanometric content of the field of view without requiring the acquisition of a super-resolved image. This information is used to automatically select the imaging modality and regions of interest, optimizing the acquisition sequence by reducing light exposure. Data-driven microscopy methods like the TA-GAN will enable the observation of dynamic molecular processes with spatial and temporal resolutions that surpass the limits currently imposed by the trade-offs constraining super-resolution microscopy.

     
    more » « less
  3. Klymkowsky, Michael (Ed.)
    Canonical Wnt/β-catenin (cWnt) signaling is a crucial regulator of development and Dishevelled (Dsh/Dvl) functions as an integral part of this pathway by linking Wnt binding to the Frizzled:LRP5/6 receptor complex with β-catenin-stimulated gene expression. In many cell types Dsh has been localized to ill-defined cytoplasmic puncta, however in sea urchin eggs and embryos confocal fluorescence microscopy has shown that Dsh is localized to puncta present in a novel and development-essential vegetal cortex domain (VCD). In the present study, we used super-resolution light microscopy and platinum replica transmission electron microscopy (TEM) to provide the first views of the ultrastructural organization of Dsh within the sea urchin VCD. 3D structured illumination microscopy (SIM) imaging of isolated egg cortices demonstrated the graded distribution of Dsh in the VCD, whereas higher resolution stimulated emission depletion (STED) imaging revealed that some individual Dsh puncta consisted of more than one fluorescent source. Platinum replica immuno-TEM localization showed that Dsh puncta on the cytoplasmic face of the plasma membrane consisted of aggregates of pedestal-like structures each individually labeled with the C-terminus specific Dsh antibody. These aggregates were resistant to detergent extraction and treatment with drugs that disrupt actin filaments or inhibit myosin II contraction, and coexisted with the first cleavage actomyosin contractile ring. These results confirm and extend previous studies and reveal, for the first time in any cell type, the nanoscale organization of plasma membrane tethered Dsh. Our current working hypothesis is that these Dsh pedestals represent a prepositioned scaffold organization that is important for the localized activation of the cWnt pathway at the sea urchin vegetal pole. These observations in sea urchins may also be relevant to the submembranous Dsh puncta present in other eggs and embryos. 
    more » « less
  4. Abstract

    Interactions between light and matter serve as the basis of many technologies, but the quality of these devices is inherently limited by the optical properties of their constituents. Plasmonic nanoparticles are a highly versatile and tunable platform for the enhancement of such optical properties. However, the near‐field nature of these effects has made thorough study and understanding of these mechanisms difficult. In this work, we introduce a fully confocal technique combining photoswitching super‐resolution microscopy with fluorescence lifetime imaging microscopy to study single‐molecule decay rate enhancement. We demonstrate that the technique combines a spatial resolution better than 20 nm, and a 16 ps temporal resolution. Simultaneously, an autocorrelation measurement is also performed to confirm that the data indeed originates from single molecules. This work provides insight into the various mechanisms of plasmon‐enhanced emission, and allows the study of the correlation between emission intensity and lifetime enhancement. This complicated relationship is shown to be dependent upon the relative influence of various radiative and nonradiative decay pathways. Here, we provide a platform for further study of emission mislocalization, the position‐dependent prominence of different decay pathways, and the direct super‐resolved measurement of the local density of states.

     
    more » « less
  5. Abstract

    One of the major shortcomings of nano carriers‐assisted cancer therapeutic strategies continues to be the inadequate tumor penetration and retention of systemically administered nanoformulations and its off‐target toxicity. Stromal parameters‐related heterogeneity in enhanced permeability and retention effect and physicochemical properties of the nanoformulations immensely contributes to their poor tumor extravasation. Herein, a novel tumor targeting strategy, where an intratumorally implanted micromagnet can significantly enhance accumulation of magneto‐plasmonic nanoparticles (NPs) at the micromagnet‐implanted tumor in bilateral colorectal tumor models while limiting their off‐target accumulation, is demonstrated. To this end, novel multimodal gold/iron oxide NPs comprised of an array of multifunctional moieties with high therapeutic, sensing, and imaging potential are developed. It is also discovered that cancer cell targeted NPs in combination with static magnetic field can selectively induce cancer cell death. A multimodal caspase‐3 nanosensor is also developed for real‐time visualization of selective induction of apoptosis in cancer cells. In addition, the photothermal killing capability of these NPs in vitro is evaluated, and their potential for enhanced photothermal ablation in tissue samples is demonstrated. Building on current uses of implantable devices for therapeutic purposes, this study envisions the proposed micromagnet‐assisted NPs delivery approach may be used to accelerate the clinical translation of various nanoformulations.

     
    more » « less