skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanosecond photochemically promoted click chemistry for enhanced neuropeptide visualization and rapid protein labeling
Abstract Comprehensive protein identification and concomitant structural probing of proteins are of great biological significance. However, this is challenging to accomplish simultaneously in one confined space. Here, we develop a nanosecond photochemical reaction (nsPCR)-based click chemistry, capable of structural probing of proteins and enhancing their identifications through on-demand removal of surrounding matrices within nanoseconds. The nsPCR is initiated using a photoactive compound, 2-nitrobenzaldehyde (NBA), and is examined by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Benefiting from the on-demand matrix-removal effect, this nsPCR strategy enables enhanced neuropeptide identification and visualization from complex tissue samples such as mouse brain tissue. The design shows great promise for structural probing of proteins up to 155 kDa due to the exclusive accessibility of nsPCR to primary amine groups, as demonstrated by its general applicability using a series of proteins with various lysine residues from multiple sample sources, with accumulated labeling efficiencies greater than 90%.  more » « less
Award ID(s):
1710140
PAR ID:
10153665
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multimode fiber-based endoscopes have recently emerged as a tool for minimally invasive endoscopy in tissue, at depths well beyond the reach of multiphoton imaging. Here, we demonstrate label-free second-harmonic generation (SHG) microscopy through such a fiber endoscope. We simultaneously fully control the excitation polarization state and the spatial distribution of the light at the fiber tip, and we use this to implement polarization-resolved SHG imaging, which allows imaging and identification of structural proteins such as collagen and myosin. We image mouse tail tendon and heart tissue, employing the endoscope at depths up to 1 mm, demonstrating that we can differentiate these structural proteins. This method has the potential for enabling instant andin situdiagnosis of tumors and fibrotic conditions in sensitive tissue with minimal damage. 
    more » « less
  2. Archibald, John (Ed.)
    Abstract Nuclear matrix constituent proteins in plants function like animal lamins, providing the structural foundation of the nuclear lamina and regulating nuclear organization and morphology. Although they are well characterized in angiosperms, the presence and structure of nuclear matrix constituent proteins in more distantly related species, such as streptophytic algae, are relatively unknown. The rapid evolution of nuclear matrix constituent proteins throughout the plant lineage has caused a divergence in protein sequence that makes similarity-based searches less effective. Structural features are more likely to be conserved compared to primary amino acid sequence; therefore, we developed a filtration protocol to search for diverged nuclear matrix constituent proteins based on four physical characteristics: intrinsically disordered content, isoelectric point, number of amino acids, and the presence of a central coiled-coil domain. By setting parameters to recognize the properties of bona fide nuclear matrix constituent protein proteins in angiosperms, we filtered eight complete proteomes from streptophytic algae species and identified strong nuclear matrix constituent protein candidates in six taxa in the Classes Zygnematophyceae, Charophyceae, and Klebsormidiophyceae. Through analysis of these proteins, we observed structural variance in domain size between nuclear matrix constituent proteins in algae and land plants, as well as a single block of amino acid conservation. Our analysis indicates that nuclear matrix constituent proteins are absent in the Mesostigmatophyceae. The presence versus absence of nuclear matrix constituent protein proteins does not correlate with the distribution of different forms of mitosis (e.g. closed/semi-closed/open) but does correspond to the transition from unicellularity to multicellularity in the streptophytic algae, suggesting that a nuclear matrix constituent protein-based nucleoskeleton plays important roles in supporting cell-to-cell interactions. 
    more » « less
  3. Abstract Bacterial cells at fluid interfaces can self-assemble into collective communities with stunning macroscopic morphologies. Within these soft, living materials, called pellicles, constituent cells gain group-level survival advantages including increased antibiotic resistance. However, the regulatory and structural components that drive pellicle self-patterning are not well defined. Here, usingVibrio choleraeas our model system, we report that two sets of matrix proteins and a key quorum-sensing regulator jointly orchestrate the sequential mechanical instabilities underlying pellicle morphogenesis, culminating in fractal patterning. A pair of matrix proteins, RbmC and Bap1, maintain pellicle localization at the interface and prevent self-peeling. A single matrix protein, RbmA, drives a morphogenesis program marked by a cascade of ever finer wrinkles with fractal scaling in wavelength. Artificial expression ofrbmArestores fractal wrinkling to a ΔrbmAmutant and enables precise tuning of fractal dimensions. The quorum-sensing regulatory small RNAs Qrr1-4 first activate matrix synthesis to launch pellicle primary wrinkling and ridge instabilities. Subsequently, via a distinct mechanism, Qrr1-4 suppress fractal wrinkling to promote fine modulation of pellicle morphology. Our results connect cell-cell signaling and architectural components to morphogenic patterning and suggest that manipulation of quorum-sensing regulators or synthetic control ofrbmAexpression could underpin strategies to engineer soft biomaterial morphologies on demand. 
    more » « less
  4. Abstract Hydrogels are engineered with biochemical and biophysical signals to recreate aspects of the native microenvironment and to control cellular functions such as differentiation and matrix deposition. This deposited matrix accumulates within the pericellular space and likely affects the interactions between encapsulated cells and the engineered hydrogel; however, there has been little work to study the spatiotemporal evolution of matrix at this interface. To address this, metabolic labeling is employed to visualize the temporal and spatial positioning of nascent proteins and proteoglycans deposited by chondrocytes. Within covalently crosslinked hyaluronic acid hydrogels, chondrocytes deposit nascent proteins and proteoglycans in the pericellular space within 1 d after encapsulation. The accumulation of this matrix, as measured by an increase in matrix thickness during culture, depends on the initial hydrogel crosslink density with decreased thicknesses for more crosslinked hydrogels. Encapsulated fluorescent beads are used to monitor the hydrogel location and indicate that the emerging nascent matrix physically displaces the hydrogel from the cell membrane with extended culture. These findings suggest that secreted matrix increasingly masks the presentation of engineered hydrogel cues and may have implications for the design of hydrogels in tissue engineering and regenerative medicine. 
    more » « less
  5. Abstract BackgroundBasic fibroblast growth factor (bFGF) is one of the critical components accelerating angiogenesis and tissue regeneration by promoting the migration of dermal fibroblasts and endothelial cells associated with matrix formation and remodeling in wound healing process. However, clinical applications of bFGF are substantially limited by its unstable nature due to rapid decomposition under physiological microenvironment. ResultsIn this study, we present the bFGF-loaded human serum albumin nanoparticles (HSA-bFGF NPs) as a means of enhanced stability and sustained release platform during tissue regeneration. Spherical shape of the HSA-bFGF NPs with uniform size distribution (polydispersity index < 0.2) is obtainedviaa simple desolvation and crosslinking process. The HSA-bFGF NPs securely load and release the intact soluble bFGF proteins, thereby significantly enhancing the proliferation and migration activity of human dermal fibroblasts. Myofibroblast-related genes and proteins were also significantly down-regulated, indicating decrease in risk of scar formation. Furthermore, wound healing is accelerated while achieving a highly organized extracellular matrix and enhanced angiogenesis in vivo. ConclusionConsequently, the HSA-bFGF NPs are suggested not only as a delivery vehicle but also as a protein stabilizer for effective wound healing and tissue regeneration. 
    more » « less