Abstract We show that an interacting electronic system with a single ordinary or extended Van Hove point, which crosses the Fermi energy, is unstable against triplet superconductivity. The pairing mechanism is unconventional. There is no Cooper instability. Instead, pairing is due to the divergence of the density of states at a Van Hove point, leading to a superconducting quantum critical point at a finite detuning from the Van Hove point. The transition temperature is universally determined by the exponent governing the divergence of the density of states. Enhancing this exponent drastically increasesTc. The Cooper pair wave function has a non-monotonic momentum dependence with a steep slope near the gap nodes. In the absence of spin–orbit coupling, pairing fluctuations suppress a 2espin-triplet state, but allow pairs of triplets to condense into a charge-4esinglet state at a temperature of similar order as our result.
more »
« less
Finite momentum Cooper pairing in three-dimensional topological insulator Josephson junctions
Abstract Unconventional superconductivity arising from the interplay between strong spin–orbit coupling and magnetism is an intensive area of research. One form of unconventional superconductivity arises when Cooper pairs subjected to a magnetic exchange coupling acquire a finite momentum. Here, we report on a signature of finite momentum Cooper pairing in the three-dimensional topological insulator Bi2Se3. We apply in-plane and out-of-plane magnetic fields to proximity-coupled Bi2Se3and find that the in-plane field creates a spatially oscillating superconducting order parameter in the junction as evidenced by the emergence of an anomalous Fraunhofer pattern. We describe how the anomalous Fraunhofer patterns evolve for different device parameters, and we use this to understand the microscopic origin of the oscillating order parameter. The agreement between the experimental data and simulations shows that the finite momentum pairing originates from the coexistence of the Zeeman effect and Aharonov–Bohm flux.
more »
« less
- Award ID(s):
- 1710437
- PAR ID:
- 10153688
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The interface between 2D topological Dirac states and ans‐wave superconductor is expected to support Majorana‐bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin‐orbit coupling to achieve spin‐momentum‐locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55Se0.45, inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1–ySey(Fe(Te,Se)) grown on Bi2Te3by molecular beam epitaxy (MBE). Spin and angle‐resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2Te3heterostructures. Fory = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2Te3TIS and the desired spin‐momentum locking is not observed. In contrast, fory = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin‐momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2Te3system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications.more » « less
-
Superconductivity had been one of the most enigmatic phenomena in condensed matter physics, puzzling the best theorists for 45 years, since the original discovery by Kamerlingh-Onnes in 1911 till the final solution by Bardeen, Cooper, and Schrieffer (BCS) in 1957. The original BCS proposal assumed the highest-symmetry form for the superconducting order parameter Δ, namely, a constant, and a uniform pairing interaction due to attractive mediation of ionic vibration. While it was rather soon realized that generalizations onto k-dependent order parameters and anisotropic pairing interaction was straightforward, only thirty years later, upon the discovery of high-temperature superconductivity in cuprates, high-order angular dependence of Δ and repulsive interaction, mediated by spin fluctuations or Coulomb repulsion brought such “unconventional” into the spotlight. In 2008 yet another such system was discovered, and eventually the idea of repulsion-mediated unconventional superconductivity was generally accepted. Apart from the two specific systems mentioned above, a large number of various specific implementations of this idea have been proposed, and it is becoming increasingly clear that it is worth studying mathematically how unconventional superconductivity emerges, and with what properties, for a simple, but sufficiently general theoretical model. In our project, we study systematically unconventional superconductivity in an isotropic two-dimensional model system of electrons, subjected to repulsive interactions of a simple, but physically motivated form: a delta function peaked at a particular momentum (from 0 to twice the Fermi momentum), or Gaussian of varying widths.more » « less
-
Abstract Strongly correlated electronic systems exhibit a wealth of unconventional behavior stemming from strong electron-electron interactions. The LaAlO3/SrTiO3(LAO/STO) heterostructure supports rich and varied low-temperature transport characteristics including low-density superconductivity, and electron pairing without superconductivity for which the microscopic origins is still not understood. LAO/STO also exhibits inexplicable signatures of electronic nematicity via nonlinear and anomalous Hall effects. Nanoscale control over the conductivity of the LAO/STO interface enables mesoscopic experiments that can probe these effects and address their microscopic origins. Here we report a direct correlation between electron pairing without superconductivity, anomalous Hall effect and electronic nematicity in quasi-1D ballistic nanoscale LAO/STO Hall crosses. The characteristic magnetic field at which the Hall coefficient changes directly coincides with the depairing of non-superconducting pairs showing a strong correlation between the two distinct phenomena. Angle-dependent Hall measurements further reveal an onset of electronic nematicity that again coincides with the electron pairing transition, unveiling a rotational symmetry breaking due to the transition from paired to unpaired phases at the interface. The results presented here highlights the influence of preformed electron pairs on the transport properties of LAO/STO and provide evidence of the elusive pairing “glue” that gives rise to electron pairing in SrTiO3-based systems.more » « less
-
Abstract Integration of a quantum anomalous Hall insulator with a magnetically ordered material provides an additional degree of freedom through which the resulting exotic quantum states can be controlled. Here, an experimental observation is reported of the quantum anomalous Hall effect in a magnetically‐doped topological insulator grown on the antiferromagnetic insulator Cr2O3. The exchange coupling between the two materials is investigated using field‐cooling‐dependent magnetometry and polarized neutron reflectometry. Both techniques reveal strong interfacial interaction between the antiferromagnetic order of the Cr2O3and the magnetic topological insulator, manifested as an exchange bias when the sample is field‐cooled under an out‐of‐plane magnetic field, and an exchange spring‐like magnetic depth profile when the system is magnetized within the film plane. These results identify antiferromagnetic insulators as suitable candidates for the manipulation of magnetic and topological order in topological insulator films.more » « less
An official website of the United States government
