skip to main content


Title: Physical ageing of spreading droplets in a viscous ambient phase
Abstract

In this work, we study the spontaneous spreading of water droplets immersed in oil and report an unexpectedly slow kinetic regime not described by previous spreading models. We can quantitatively describe the observed regime crossover and spreading rate in the late kinetic regime with an analytical model considering the presence of periodic metastable states induced by nanoscale topographic features (characteristic area ~4 nm2, height ~1 nm) observed via atomic force microscopy. The analytical model proposed in this work reveals that certain combinations of droplet volume and nanoscale topographic parameters can significantly hinder or promote wetting processes such as spreading, wicking, and imbibition.

 
more » « less
NSF-PAR ID:
10153721
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an experimental and theoretical comparison of two different scattering-type scanning near-field optical microscopy (s-SNOM) based techniques in the terahertz regime; nanoscale reflection-type terahertz time-domain spectroscopy (THz nanoscopy) and nanoscale laser terahertz emission microscopy, or laser terahertz emission nanoscopy (LTEN). We show that complementary information regarding a material’s charge carriers can be gained from these techniques when employed back-to-back. For the specific case of THz nanoscopy and LTEN imaging performed on a lightly p-doped InAs sample, we were able to record waveforms with detector signal components demodulated up to the 6thand the 10thharmonic of the tip oscillation frequency, and measure a THz near-field confinement down to 11 nm. A computational approach for determining the spatial confinement of the enhanced electric field in the near-field region of the conductive probe is presented, which manifests an effective “tip sharpening” in the case of nanoscale LTEN due to the alternative geometry and optical nonlinearity of the THz generation mechanism. Finally, we demonstrate the utility of the finite dipole model (FDM) in predicting the broadband scattered THz electric field, and present the first use of this model for predicting a near-field response from LTEN.

     
    more » « less
  2. Abstract

    We have performed hybrid kinetic-fluid simulations of a positive column in alternating current (AC) argon discharges over a range of driving frequenciesfand gas pressurepfor the conditions when the spatial nonlocality of the electron energy distribution function (EEDF) is substantial. Our simulations confirmed that the most efficient conditions of plasma maintenance are observed in the dynamic regime when time modulations of mean electron energy (temperature) are substantial. The minimal values of the root mean square electric field and the electron temperature have been observed atf/pvalues of about 3 kHz Torr−1in a tube of radiusR= 1 cm. The ionization rate and plasma density reached maximal values under these conditions. The numerical solution of a kinetic equation allowed accounting for the kinetic effects associated with spatial and temporal nonlocality of the EEDF. Using thekineticenergy of electrons as an independent variable, we solved an anisotropic tensor diffusion equation in phase space. We clarified the role of different flux components during electron diffusion in phase space over surfaces of constanttotalenergy. We have shown that the kinetic theory uncovers a more exciting and rich physics than the classical ambipolar diffusion (Schottky) model. Non-monotonic radial distributions of excitation rates, metastable densities, and plasma density have been observed in our simulations atpR >6 Torr cm. The predicted off-axis plasma density peak in the dynamic regime has never been observed in experiments so far. We hope our results stimulate further experimental studies of the AC positive column. The kinetic analysis could help uncover new physics even for such a well-known plasma object as a positive column in noble gases.

     
    more » « less
  3. Abstract

    The aquatic bladderwortUtricularia gibbacaptures zooplankton in mechanically triggered underwater traps. With characteristic dimensions <1 mm, the trapping structures are among the smallest known that work by suction—a mechanism that would not be effective in the creeping‐flow regime. To understand the adaptations that make suction feeding possible on this small scale, we have measured internal flow speeds during artificially triggered feeding strikes in the absence of prey. These data are compared with complementary analytical models of the suction event: an inviscid model of the jet development in time and a steady‐state model incorporating friction. The initial dynamics are well described by a time‐dependent Bernoulli equation in which the action of the trap door is represented by a step increase in driving pressure. According to this model, the observed maximum flow speed (5.2 m/s) depends only on the pressure difference, whereas the initial acceleration (3 × 104 m/s2) is determined by pressure difference and channel length. Because the terminal speed is achieved quickly (~0.2 ms) and the channel is short, the remainder of the suction event (~2.0 ms) is effectively an undeveloped viscous steady state. The steady‐state model predicts that only 17% of power is lost to friction. The energy efficiency and steady‐state fluid speed decrease rapidly with decreasing channel diameter, setting a lower limit on practical bladderwort size.

     
    more » « less
  4. Abstract

    Observed variations in across‐axis topographic relief and faulting style at spreading centers have been challenging to explain. Axial highs are seen at fast‐spreading centers, while valleys occur for slow‐spreading centers. Fault offsets range from tens of meters at fast‐spreading ridges to tens of kilometers at some slow‐spreading ridges. Models that fit the axial relief fail to produce observed fault patterns, while models that fit the fault patterns fail to produce observed variations in axial relief. A recent mechanical analysis (Liu & Buck, 2018,https://doi.org/10.1016/j.epsl.2018.03.045) suggests that including the effect of many discrete diking events can result in a gradual change in axial relief with crustal thicknesses. To compare this mechanical model directly with observations requires us to couple it with a two‐dimensional thermal model. This allows us to estimate the axial lithospheric thickness consistently as a function of the spreading rate and crustal thickness. For thinner axial lithosphere the model predicts an axial high with relief supported by low‐density material beneath the axial lithosphere. For axial lithospheric thickness between approximately one half and approximately three fourths of the crustal thickness, the axial depth decreases with magma supply increase. For thicker axial lithosphere the axial valley relief is controlled by axial brittle lithospheric thickness and near‐axis lithospheric geometry. We compared model predictions to data by compiling observations on axial relief and faulting mode for all spreading centers where seismic crustal thickness has been measured. Good fit to the data is obtained for model parameters giving dike widths in the axial lithosphere close to a meter.

     
    more » « less
  5. Abstract. Photoacoustic spectroscopy (PAS) has become a popular technique for measuringabsorption of light by atmospheric aerosols in both the laboratory andfield campaigns. It has low detection limits, measures suspended aerosols,and is insensitive to scattering. But PAS requires rigorous calibration to beapplied quantitatively. Often, a PAS instrument is either filled with a gasof known concentration and absorption cross section, such that the absorptionin the cell can be calculated from the product of the two, or the absorptionis measured independently with a technique such as cavity ring-downspectroscopy. Then, the PAS signal can be regressed upon the known absorptionto determine a calibration slope that reflects the sensitivity constant ofthe cell and microphone. Ozone has been used for calibrating PAS instrumentsdue to its well-known UV–visible absorption spectrum and the ease with whichit can be generated. However, it is known to photodissociate up toapproximately 1120nm via the O3 + hν(&gt;1.1eV)O2(3Σg-) + O(3P) pathway, which is likely tolead to inaccuracies in aerosol measurements. Two recent studies haveinvestigated the use of O3 for PAS calibration but have reachedseemingly contradictory conclusions with one finding that it results in asensitivity that is a factor of 2 low and the other concluding that it isaccurate. The present work is meant to add to this discussion by exploringthe extent to which O3 photodissociates in the PAS cell and the rolethat the identity of the bath gas plays in determining the PAS sensitivity.We find a 5% loss in PAS signal attributable to photodissociation at 532nmin N2 but no loss in a 5% mixture of O2 in N2.Furthermore, we discovered a dramatic increase of more than a factor of 2in the PAS sensitivity as we increased the O2 fraction in the bathgas, which reached an asymptote near 100% O2 that nearly matched thesensitivity measured with both NO2 and nigrosin particles. Weinterpret this dependence with a kinetic model that suggests the reason forthe observed results is a more efficient transfer of energy from excitedO3 to O2 than to N2 by a factor of 22–55 depending onexcitation wavelength. Notably, the two prior studies on this topic useddifferent bath gas compositions, and although the results presented here donot fully resolve the differences in their results, they may at leastpartially explain them.

     
    more » « less