skip to main content


Title: Printed, Flexible Lactate Sensors: Design Considerations Before Performing On-Body Measurements
Abstract

This work reports the process of sensor development, optimization, and characterization before the transition to on-body measurements can be made. Sensors using lactate oxidase as a sensing mechanism and tetrathiafulvalene as a mediator were optimized for sporting applications. Optimized sensors show linear range up to 24 mM lactate and sensitivity of 4.8μA/mM which normalizes to 68 μA*cm−2/mM when accounting for surface area of the sensor. The optimized sensors were characterized 3 different ways: using commercially available reference and counter electrodes, using printed reference and counter electrodes, and using a printed reference electrode with no counter electrode. Sensors intended for measuring sweat must be selective in the presence of sweat constituents. Thus, in addition to traditional characterization in pH 7.0 buffer, we characterized sensor performance in solutions intended to approximate sweat. Sensor performance in pH 7.0 buffer solution was not reflective of sensor performance in artificial sweat, indicating that further characterization is necessary between sensor measurement in pH 7.0 buffer and on-body measurements. Furthermore, we performed enzyme activity measurements and sensor measurements concurrently in five different salts individually, finding that while NH4Cl and MgCl2do not affect enzyme activity or sensor performance in physiologically relevant ranges of salt concentration, NaCl concentration or KCl concentration decreases enzyme activity and sensor current. On the other hand, CaCl2induced a nonlinear change in sensor performance and enzyme activity with increasing salt concentration.

 
more » « less
NSF-PAR ID:
10153745
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High testosterone is associated with increased physical performance in sports due to its stimulation with body-muscle ratio, lean mass (muscle and bone), and bone density. Several studies show athletes with better explosive strength and sprint running performances in football, have a higher basal level of testosterone. The results suggest a relationship between testosterone production and the development of fast-twitch muscle fibers, endurance training, lean mass, resistance training in athletes as well as motivation for competition. Thus, monitoring testosterone levels is gaining attention to evaluate athletic performance of one's physical performance in sport, fitness, and bodybuilding as well as prevent health risk factors for low levels of testosterone. There have been attempts using optical, electrical and biochemical sensors to monitor testosterone but are difficult to reproduce in large quantities and suffer from limitations of sensitivity, and detection limits. This can be addressed using Molecularly Imprinted Polymers (MIPs) in a point of care (POC) system. Molecularly Imprinted Polymers (MIPs) are a synthetic polymer with cavities in the polymer matrix serve as recognition sites for a specific template molecule, which are detected using electrochemical amperometry. In this paper, we have used MIPs in conjunction with cyclic voltammetry, to produce a viable, ultrasensitive electrochemical sensor for the detection of testosterone from a human sweat sample. This combination of MIPs and cyclic voltammetry allows for a simple, low-cost, mass-producible, and non-invasive method for detecting testosterone in human males. This method is extremely simple and cheap, allowing for consistent measurement of Testosterone levels in humans and allows for the detection of Testosterone in a POC. In our work, a Screen-printed carbon electrode (SPCE) using polypropylene fabric was used as the base working electrode in a three-electrode system. The screen-printing technique was implemented to layer a carbon paste over both sides of the fabric and was air-dried for one hour at 75⁰C. The SPCE was immersed into an acetate buffer solution that contains a 2.0mM monomer called o-phenylenediamine and with a 0.1mM testosterone template. Electropolymerization was carried out with cyclic voltammetry from a range of 0V to 1.0V, at a scan rate of 50 mV/s, a sensitivity (A/V) of 1e-5A, and for a total of 30 cycles. The set concentration tested was 100-1600 ng/ml of testosterone. The electrochemical characterization will have a potential sweep of -1.2 V to 1.2 V, a scan rate of 0.05 (V/s), a sensitivity (A/V) of 1e-5A, and a singular cycle. The wearable biosensor showed a detection range for testosterone from 100ng to 1600ng, electrochemical results also showed a clear and measurable result with an R-square value of 0.9417 which proves the accuracy of the developed sensor. Although this is not the complete saturation point and theoretically maximum limit of 28,842ng/ml can be achieved although this was not tested. The detectable lowest concentration of testosterone was found to be ~100ng/ml, and it was noted that lower than 100ng gives a weaker signal, In conclusion a novel electrochemical sensor based on a molecularly imprinted polymer used as the extended gate of a field effect transistor was developed for the ultrasensitive detection of sweat Testosterone. This sensing technology paves the way for the low cost, label-free, and point of care detection which can be used for evaluating ang monitoring athletic performance. 
    more » « less
  2. null (Ed.)
    Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications. 
    more » « less
  3. Abstract

    The concentration of dopamine (DA) and tyrosine (Tyr) reflects the condition of patients with Parkinson's disease, whereas moderate paracetamol (PA) can help relieve their pain. Therefore, real‐time measurements of these bioanalytes have important clinical implications for patients with Parkinson's disease. However, previous sensors suffer from either limited sensitivity or complex fabrication and integration processes. This work introduces a simple and cost‐effective method to prepare high‐quality, flexible titanium dioxide (TiO2) thin films with highly reactive (001)‐facets. The as‐fabricated TiO2film supported by a carbon cloth electrode (i.e., TiO2–CC) allows excellent electrochemical specificity and sensitivity to DA (1.390 µA µM−1 cm−2), Tyr (0.126 µA µM−1 cm−2), and PA (0.0841 µA µM−1 cm−2). More importantly, accurate DA concentration in varied pH conditions can be obtained by decoupling them within a single differential pulse voltammetry measurement without additional sensing units. The TiO2–CC electrochemical sensor can be integrated into a smart diaper to detect the trace amount of DA or an integrated skin‐interfaced patch with microfluidic sampling and wireless transmission units for real‐time detection of the sweat Try and PA concentration. The wearable sensor based on TiO2–CC prepared by facile manufacturing methods holds great potential in the daily health monitoring and care of patients with neurological disorders.

     
    more » « less
  4. Abstract

    The advent of 3D printing has facilitated the rapid fabrication of microfluidic devices that are accessible and cost‐effective. However, it remains a challenge to fabricate sophisticated microfluidic devices with integrated structural and functional components due to limited material options of existing printing methods and their stringent requirement on feedstock material properties. Here, a multi‐materials multi‐scale hybrid printing method that enables seamless integration of a broad range of structural and functional materials into complex devices is reported. A fully printed and assembly‐free microfluidic biosensor with embedded fluidic channels and functionalized electrodes at sub‐100 µm spatial resolution for the amperometric sensing of lactate in sweat is demonstrated. The sensors present a sensitive response with a limit of detection of 442 nmand a linear dynamic range of 1–10 mm, which are performance characteristics relevant to physiological levels of lactate in sweat. The versatile hybrid printing method offers a new pathway toward facile fabrication of next‐generation integrated devices for broad applications in point‐of‐care health monitoring and sensing.

     
    more » « less
  5. Abstract

    Although significant progress is made in identifying pH sensing materials and device configurations, a standard protocol for benchmarking performance of next‐generation pH devices is still lacking. In particular, key properties of characterization systems, such as inherent component contributions, time plots for extended‐gate field‐effect transistor (EGFET) measurements, and the input resistance (Rin), often go unreported in studies of pH sensing systems. These properties strongly influence the characterization system and can lead to mistaken attribution of properties to the device. In this paper, a series of essential characterization tests and parameters are reported to evaluate pH systems, such as the zinc oxide EGFET, in a standardized protocol. This EGFET ZnO sensor has a sensitivity of −58.1 mV pH−1, drift range from 2.5 to 14.2 µA h−1, and response time of 136 s. By using a ZnO sensing electrode, it is demonstrated that i) intrinsic contributions of reference electrode and commercial transistor (for EGFET) are not negligible; ii) time plots for EGFET configuration and defining a critical point at the onset of drift are essential for accurate sensitivity, response time, and drift reporting; and iii) the results of the pH sensing system are strongly dependent on the input resistance of the used characterization instruments.

     
    more » « less