skip to main content


Title: Noninvasive measures of physiological stress are confounded by exposure
Abstract

Glucocorticoids and glucocorticoid metabolites are increasingly used to index physiological stress in wildlife. Although feces is often abundant and can be collected noninvasively, exposure to biotic and abiotic elements may influence fecal glucocorticoid metabolite (FGM) concentrations, leading to inaccurate conclusions regarding wildlife physiological stress. Using captive snowshoe hares (Lepus americanus) and simulated environmental conditions, we evaluated how different realistic field conditions and temporal sampling constraints might influence FGM concentrations using an 11-oxoetiocholanolone-enzyme immunoassay. We quantified how fecal pellet age (i.e., 0–6 days), variable summer temperatures, and precipitation affected FGM concentrations. Fecal pellet age had a strong effect on FGM concentrations (βAge = 0.395, s.d. = 0.085; β2Age = −0.061, s.d. = 0.012), which were lowest at the beginning and end of our exposure period (e.g., meanday6 = 37.7 ng/mg) and typically highest in the middle (meanday3 = 51.8 ng/mg). The effect of fecal pellet age on FGM concentrations varied across treatments with warm-dry and cool-wet conditions resulting in more variable FGM concentrations relative to control samples. Given the confounding effects of exposure and environmental conditions, if fresh fecal pellet collection is not an option, we encourage researchers to develop a temporally consistent sampling protocol to ensure all samples are exposed to similar environmental conditions.

 
more » « less
NSF-PAR ID:
10153806
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Measurement of stress hormone metabolites in fecal samples has become a common method to assess physiological stress in wildlife populations. Glucocorticoid metabolite (GCM) measurements can be collected noninvasively, and studies relating this stress metric to anthropogenic disturbance are increasing. However, environmental characteristics (e.g., temperature) can alter measuredGCMconcentration when fecal samples cannot be collected immediately after defecation. This effect can confound efforts to separate environmental factors causing predeposition physiological stress in an individual from those acting on a fecal sample postdeposition. We used fecal samples fromAmerican pikas (Ochotona princeps) to examine the influence of environmental conditions onGCMconcentration by (1) comparingGCMconcentration measured in freshly collected control samples to those placed in natural habitats for timed exposure, and (2) relatingGCMconcentration in samples collected noninvasively throughout the westernUnitedStates to local environmental characteristics measured before and after deposition. Our timed‐exposure trials clarified the spatial scale at which exposure to environmental factors postdeposition influencesGCMconcentration in pika feces. Also, fecal samples collected from occupied pika habitats throughout the species' range revealed significant relationships betweenGCMand metrics of climate during the postdeposition period (maximum temperature, minimum temperature, and precipitation during the month of sample collection). Conversely, we found no such relationships betweenGCMand metrics of climate during the predeposition period (prior to the month of sample collection). Together, these results indicate that noninvasive measurement of physiological stress in pikas across the westernUSmay be confounded by climatic conditions in the postdeposition environment when samples cannot be collected immediately after defecation. Our results reiterate the importance of considering postdeposition environmental influences on this stress metric, especially in multiregional comparisons. However, measurements of fecalGCMconcentration should prove useful for population monitoring within an eco‐region or when postdeposition exposure can be minimized.

     
    more » « less
  2. Hayes, Loren (Ed.)
    Abstract As humans continue to alter natural habitats, many wild animals are facing novel suites of environmental stimuli. These changes, including increased human–wildlife interactions, may exert sublethal impacts on wildlife such as alterations in stress physiology and behavior. California ground squirrels (Otospermophilus beecheyi) occur in human-modified as well as more pristine environments, where they face a variety of anthropogenic and naturally occurring threats. This makes this species a valuable model for examining the effects of diverse challenges on the physiology and behavior of free-living mammals. To explore potential sublethal effects of habitat modification on O. beecheyi, we compared body masses, behaviors, and fecal glucocorticoid metabolite (FGM) levels for free-living squirrels in human-disturbed versus undisturbed habitats. Prior to these analyses, we validated the use of FGMs in this species by exposing captive O. beecheyi to pharmacological and handling challenges; both challenges produced significant increases in FGMs in the study animals. While FGM responses were repeatable within captive individuals, responses by free-living animals were more variable, perhaps reflecting a greater range of life-history traits and environmental conditions within natural populations of squirrels. Animals from our human-disturbed study site had significantly higher FGMs, significantly lower body masses, and were significantly less behaviorally reactive to humans than those from our more pristine study site. Thus, despite frequent exposure of California ground squirrels to human impacts, anthropogenic stressors appear to influence stress physiology and other phenotypic traits in this species. These findings suggest that even human-tolerant mammalian species may experience important sublethal consequences due to human modifications of natural habitats. 
    more » « less
  3. Abstract

    Living in a rapidly changing environment can alter stress physiology at the population level, with negative impacts on health, reproductive rates, and mortality that may ultimately result in species decline. Small, isolated animal populations where genetic diversity is low are at particular risks, such as endangered Virunga mountain gorillas (Gorilla beringei beringei). Along with climate change‐associated environmental shifts that are affecting the entire population, subpopulations of the Virunga gorillas have recently experienced extreme changes in their social environment. As the growing population moves closer to the forest's carrying capacity, the gorillas are coping with rising population density, increased frequencies of interactions between social units, and changing habitat use (e.g., more overlapping home ranges and routine ranging at higher elevations). Using noninvasive monitoring of fecal glucocorticoid metabolites (FGM) on 115 habituated Virunga gorillas, we investigated how social and ecological variation are related to baseline FGM levels, to better understand the adaptive capacity of mountain gorillas and monitor potential physiological indicators of population decline risks. Generalized linear mixed models revealed elevated mean monthly baseline FGM levels in months with higher rainfall and higher mean maximum and minimum temperature, suggesting that Virunga gorillas might be sensitive to predicted warming and rainfall trends involving longer, warmer dry seasons and more concentrated and extreme rainfall occurrences. Exclusive use of smaller home range areas was linked to elevated baseline FGM levels, which may reflect reduced feeding efficiency and increased travel efforts to actively avoid neighboring groups. The potential for additive effects of stress‐inducing factors could have short‐ and long‐term impacts on the reproduction, health, and ultimately survival of the Virunga gorilla population. The ongoing effects of environmental changes and population dynamics must be closely monitored and used to develop effective long‐term conservation strategies that can help address these risk factors.

     
    more » « less
  4. Otolith chemistry has gained increasing attention as a tool for analyzing various aspects of fish biology, such as stock dynamics, migration patterns, hypoxia and pollution exposure, and connectivity between habitats. While these studies often assume otolith elemental concentrations reflect environmental conditions, physiological processes are increasingly recognized as a modulating and/or controlling factor. In particular, biomineralization—the complex, enzyme-regulated construction of CaCO3 crystals scaffolded by proteins—is believed to play a critical role in governing otolith chemical patterns. This review aims to summarize the knowledge on otolith composition and biophysical drivers of biomineralization, present hypotheses on how biomineralization should affect element incorporation, and test the validity thereof with selected case studies. Tracers of environmental history are assumed to be dominated by elements that substitute for Ca during crystal growth or that occur randomly trapped within the crystal lattice. Strontium (Sr) and barium (Ba) largely comply with the biomineralization-based hypotheses that otolith element patterns reflect environmental concentrations, without additional effects of salinity, but can be influenced by physiological processes, typically exhibiting decreasing incorporation with increasing growth. Conversely, tracers of physiology are assumed to be elements under physiological control and primarily occur protein-bound in the otolith’s organic matrix. Physiological tracers are hypothesized to reflect feeding rate and/or growth, decrease with fish age, and exhibit minimal influence of environmental concentration. The candidate elements phosphorus (P), copper (Cu) and zinc (Zn) confirm these hypotheses. Magnesium (Mg) is believed to be randomly trapped in the crystal structure and hence a candidate for environmental reconstruction, but the response to all examined drivers suggest Mg to be coupled to growth. Manganese (Mn) substitutes for Ca, but is also a co-factor in matrix proteins, and therefore exhibits otolith patterns reflecting both environmental (concentration and salinity) and physiological (ontogeny and growth) histories. A consistent temperature response was not evident across studies for either environmental or physiological tracers, presumably attributable to variable relationships between temperature and fish behavior and physiology (e.g., feeding rate, reproduction). Biomineralization thus has a controlling effect on otolith element concentrations for elements that are linked with somatic growth, but not for elements that substitute for Ca in the crystal lattice. Interpretation of the ecological significance of patterns from field samples therefore needs to consider the impact of the underlying biomineralization processes of the element in question as well as physiological processes regulating the availability of ions for inclusion in the growing crystal lattice. Such understanding will enhance the utility of this technique to address fisheries management questions. 
    more » « less
  5. Abstract Rates of human-induced environmental change continue increasing with human population size, potentially altering animal physiology and negatively affecting wildlife. Researchers often use glucocorticoid concentrations (hormones that can be associated with stressors) to gauge the impact of anthropogenic factors (e.g. urbanization, noise and light pollution). Yet, no general relationships between human-induced environmental change and glucocorticoids have emerged. Given the number of recent studies reporting baseline and stress-induced corticosterone (the primary glucocorticoid in birds and reptiles) concentrations worldwide, it is now possible to conduct large-scale comparative analyses to test for general associations between disturbance and baseline and stress-induced corticosterone across species. Additionally, we can control for factors that may influence context, such as life history stage, environmental conditions and urban adaptability of a species. Here, we take a phylogenetically informed approach and use data from HormoneBase to test if baseline and stress-induced corticosterone are valid indicators of exposure to human footprint index, human population density, anthropogenic noise and artificial light at night in birds and reptiles. Our results show a negative relationship between anthropogenic noise and baseline corticosterone for birds characterized as urban avoiders. While our results potentially indicate that urban avoiders are more sensitive to noise than other species, overall our study suggests that the relationship between human-induced environmental change and corticosterone varies across species and contexts; we found no general relationship between human impacts and baseline and stress-induced corticosterone in birds, nor baseline corticosterone in reptiles. Therefore, it should not be assumed that high or low levels of exposure to human-induced environmental change are associated with high or low corticosterone levels, respectively, or that closely related species, or even individuals, will respond similarly. Moving forward, measuring alternative physiological traits alongside reproductive success, health and survival may provide context to better understand the potential negative effects of human-induced environmental change. 
    more » « less