In the recent decade, we have seen major progress in quantifying the behaviors and the impact of scientists, resulting in a quantitative toolset capable of monitoring and predicting the career patterns of the profession. It is unclear, however, if this toolset applies to other creative domains beyond the sciences. In particular, while performance in the arts has long been difficult to quantify objectively, research suggests that professional networks and prestige of affiliations play a similar role to those observed in science, hence they can reveal patterns underlying successful careers. To test this hypothesis, here we focus on ballet, as it allows us to investigate in a quantitative fashion the interplay of individual performance, institutional prestige, and network effects. We analyze data on competition outcomes from 6363 ballet students affiliated with 1603 schools in the United States, who participated in the Youth America Grand Prix (YAGP) between 2000 and 2021. Through multiple logit models and matching experiments, we provide evidence that schools’ strategic network position bridging between communities captures social prestige and predicts the placement of students into jobs in ballet companies. This work reveals the importance of institutional prestige on career success in ballet and showcases the potential of network science approaches to provide quantitative viewpoints for the professional development of careers beyond science.
A central question in the science of science concerns how to develop a quantitative understanding of the evolution and impact of individual careers. Over the course of history, a relatively small fraction of individuals have made disproportionate, profound, and lasting impacts on science and society. Despite a long-standing interest in the careers of scientific elites across diverse disciplines, it remains difficult to collect large-scale career histories that could serve as training sets for systematic empirical and theoretical studies. Here, by combining unstructured data collected from CVs, university websites, and Wikipedia, together with the publication and citation database from Microsoft Academic Graph (MAG), we reconstructed publication histories of nearly all Nobel prize winners from the past century, through both manual curation and algorithmic disambiguation procedures. Data validation shows that the collected dataset presents among the most comprehensive collection of publication records for Nobel laureates currently available. As our quantitative understanding of science deepens, this dataset is expected to have increasing value. It will not only allow us to quantitatively probe novel patterns of productivity, collaboration, and impact governing successful scientific careers, it may also help us unearth the fundamental principles underlying creativity and the genesis of scientific breakthroughs.
more » « less- Award ID(s):
- 1829344
- PAR ID:
- 10153819
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Many have argued that datasets resulting from scientific research should be part of the scholarly record as first class research products. Data sharing mandates from funding agencies and scientific journal publishers along with calls from the scientific community to better support transparency and reproducibility of scientific research have increased demand for tools and support for publishing datasets. Hydrology domain‐specific data publication services have been developed alongside more general purpose and even commercial data repositories. Prominent among these are the Hydrologic Information System (HIS) and HydroShare repositories developed by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI). More broadly, however, multiple organizations have been involved in the practice of data publication in the hydrology domain, each having different roles that have shaped data publication and reuse. Bibliographic and archival approaches to data publication have been advanced, but both have limitations with respect to hydrologic data. Specific recommendations for improving data publication infrastructure, support, and practices to move beyond existing limitations and enable more effective data publication in support of scientific research in the hydrology domain include: improving support for journal article‐based data access and data citation, considering the workflow for data publication, enhancing support for reproducible science, encouraging publication of curated reference data collections, advancing interoperability standards for sharing data and metadata among repositories, developing partnerships with university libraries offering data services, and developing more specific data management plans. While presented in the context of CUAHSI's data repositories and experience, these recommendations are broadly applicable to other domains.
This article is categorized under:
Science of Water > Methods
-
In a typical science class, communication exercises may include a variety of outputs including lab reports, posters, reflective writing, or research proposals. However, a growing number of students are engaging in more complex and professional communication endeavors, including scientific publication. The chance to write a research paper and experience the peer-review and publication processes may provide students the opportunity to integrate several practices from the Next Generation Science Standards, as well as share their research in a more public setting. Although we have some limited understanding in terms of the outcomes that students experience when engaging in peer-review and publication of their science research papers, we have no information or data regarding why students want to participate in these processes. As such, the purpose of this study is to investigate the motivations of pre-college students to pursue peer-review and publication of their scientific research papers. Using the theory of science identity to analyze the data, I found that students view publication as a mechanism to grow their scientific skills and be recognized as a scientist. The findings suggest that providing students the opportunity to share their research in more public settings could be a factor in developing their science identity.more » « less
-
Abstract This paper uses accounting concepts—particularly the concept of Return on Investment (ROI)—to reveal the quantitative value of scientific research pertaining to a major US cyberinfrastructure project (XSEDE—the eXtreme Science and Engineering Discovery Environment). XSEDE provides operational and support services for advanced information technology systems, cloud systems, and supercomputers supporting non-classified US research, with an average budget for XSEDE of US$20M+ per year over the period studied (2014–2021). To assess the financial effectiveness of these services, we calculated a proxy for ROI, and converted quantitative measures of XSEDE service delivery into financial values using costs for service from the US marketplace. We calculated two estimates of ROI: a Conservative Estimate, functioning as a lower bound and using publicly available data for a lower valuation of XSEDE services; and a Best Available Estimate, functioning as a more accurate estimate, but using some unpublished valuation data. Using the largest dataset assembled for analysis of ROI for a cyberinfrastructure project, we found a Conservative Estimate of ROI of 1.87, and a Best Available Estimate of ROI of 3.24. Through accounting methods, we show that XSEDE services offer excellent value to the US government, that the services offered uniquely by XSEDE (that is, not otherwise available for purchase) were the most valuable to the facilitation of US research activities, and that accounting-based concepts hold great value for understanding the mechanisms of scientific research generally.
-
Data are becoming increasingly important in science and society, and thus data literacy is a vital asset to students as they prepare for careers in and outside science, technology, engineering, and mathematics and go on to lead productive lives. In this paper, we discuss why the strongest learning experiences surrounding data literacy may arise when students are given opportunities to work with authentic data from scientific research. First, we explore the overlap between the fields of quantitative reasoning, data science, and data literacy, specifically focusing on how data literacy results from practicing quantitative reasoning and data science in the context of authentic data. Next, we identify and describe features that influence the complexity of authentic data sets (selection, curation, scope, size, and messiness) and implications for data-literacy instruction. Finally, we discuss areas for future research with the aim of identifying the impact that authentic data may have on student learning. These include defining desired learning outcomes surrounding data use in the classroom and identification of teaching best practices when using data in the classroom to develop students’ data-literacy abilities.more » « less