skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Osmotically Driven and Detected DNA Translocations
Abstract A salinity gradient propels a DNA molecule through a solid-state nanopore and generates an ionic current whose change allows for the detection of the translocation. Measurements and theoretical analyses reveal the role of diffusio-osmosis in driving these phenomena: After accounting for known salinity-dependent electrode effects, the measured current change caused by the presence of a DNA molecule inside the nanopore and the DNA translocation speed through it both increase with the magnitude of the applied salinity gradients. The effects are consistent with the theory of diffuisio-osmosis and strong enough to enable DNA translocations to overcome an applied retarding potential of tens of millivolts. This work illustrates how salinity gradients can be used to power and operate a nanopore sensor.  more » « less
Award ID(s):
1904511 1505878
PAR ID:
10153839
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modeling and simulation has become an invaluable partner in development of nanopore sensing systems. The key advantage of the nanopore sensing method – the ability to rapidly detect individual biomolecules as a transient reduction of the ionic current flowing through the nanopore – is also its key deficiency, as the current signal itself rarely provides direct information about the chemical structure of the biomolecule. Complementing experimental calibration of the nanopore sensor readout, coarse-grained and all-atom molecular dynamics simulations have been used extensively to characterize the nanopore translocation process and to connect the microscopic events taking place inside the nanopore to the experimentally measured ionic current blockades. Traditional coarse-grained simulations, however, lack the precision needed to predict ionic current blockades with atomic resolution whereas traditional all-atom simulations are limited by the length and time scales amenable to the method. Here, we describe a multi-resolution framework for modeling electric field-driven passage of DNA molecules and nanostructures through to-scale models of synthetic nanopore systems. We illustrate the method by simulating translocation of double-stranded DNA through a solid-state nanopore and a micron-scale slit, capture and translocation of single-stranded DNA in a double nanopore system, and modeling ionic current readout from a DNA origami nanostructure passage through a nanocapillary. We expect our multi-resolution simulation framework to aid development of the nanopore field by providing accurate, to-scale modeling capability to research laboratories that do not have access to leadership supercomputer facilities. 
    more » « less
  2. Abstract Inverted duplicated DNA sequences are a common feature of structural variants (SVs) and copy number variants (CNVs). Analysis of CNVs containing inverted duplicated DNA sequences using nanopore sequencing identified recurrent aberrant behavior characterized by low confidence, incorrect and missed base calls. Inverted duplicate DNA sequences in both yeast and human samples were observed to have systematic elevation in the electrical current detected at the nanopore, increased translocation rates and decreased sampling rates. The coincidence of inverted duplicated DNA sequences with dramatically reduced sequencing accuracy and an increased translocation rate suggests that secondary DNA structures may interfere with the dynamics of transit of the DNA through the nanopore. 
    more » « less
  3. Abstract Recent studies of the high energy‐conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean‐energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF‐RED) consisting of vertically aligned boron‐nitride‐nanopore (VA‐BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA‐BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2of net power density (i.e., power per membrane area). Low‐pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA‐BNNP membrane with a high nanopore density, ≈108pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA‐BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio‐osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density. 
    more » « less
  4. Abstract An ion detection device that combines a DNA-origami nanopore and a field-effect transistor (FET) was designed and modeled to determine sensitivity of the nanodevice to the local cellular environment. Such devices could be integrated into a live cell, creating an abiotic-biotic interface integrated with semiconductor electronics. A continuum model is used to describe the behavior of ions in an electrolyte solution. The drift-diffusion equations are employed to model the ion distribution, taking into account the electric fields and concentration gradients. This was matched to the results from electric double layer theory to verify applicability of the model to a bio-sensing environment. The FET device combined with the nanopore is shown to have high sensitivity to ion concentration and nanopore geometry, with the electrical double layer behavior governing the device characteristics. A logarithmic relationship was found between ion concentration and a single FET current, generating up to 200 nA of current difference with a small applied bias. 
    more » « less
  5. Translocation of proteins is correlated with structural fluctuations that access conformational states higher in free energy than the folded state. We use electric fields at the solid-state nanopore to control the relative free energy and occupancy of different protein conformational states at the single-molecule level. The change in occupancy of different protein conformations as a function of electric field gives rise to shifts in the measured distributions of ionic current blockades and residence times. We probe the statistics of the ionic current blockades and residence times for three mutants of the λ -repressor family in order to determine the number of accessible conformational states of each mutant and evaluate the ruggedness of their free energy landscapes. Translocation becomes faster at higher electric fields when additional flexible conformations are available for threading through the pore. At the same time, folding rates are not correlated with ease of translocation; a slow-folding mutant with a low-lying intermediate state translocates faster than a faster-folding two-state mutant. Such behavior allows us to distinguish among protein mutants by selecting for the degree of current blockade and residence time at the pore. Based on these findings, we present a simple free energy model that explains the complementary relationship between folding equilibrium constants and translocation rates. 
    more » « less