skip to main content


Title: Caldera-forming eruptions of mushy magma modulated by feedbacks between ascent rate, gas retention/loss and bubble/crystal framework interaction
Abstract

Caldera-forming eruptions of mushy silicic magma are among the most catastrophic natural events on Earth. In such magmas, crystals form an interlocking framework when their content reaches critical thresholds, resulting in the dramatic increase in viscous resistance to flow. Here, we propose a new mechanism for the ascent of mushy magma based on microstructural observations of crystal-rich silicic pumices and lavas from the Central Andes and decompression experiments. Microstructural data include spherical vesicles and jigsaw-puzzle association of broken crystals in pumices, whereas there is limited breakage of crystals in lavas. These observations insinuate that shearing of magma during ascent was limited. Decompression experiments reveal contrasting interaction between growing gas bubbles and the crystal framework in crystal-rich magma. Under slow decompression typical of effusive eruptions, gas extraction is promoted, whereas under rapid decompression, bubbles are retained and the crystal framework collapses. This feedback between decompression rate, retention of gas bubbles, and integrity of the crystal framework leads to strong non-linearity between magma decompression rate and eruption explosivity. We extend these findings to caldera-forming eruptions of crystal-rich magma where large overpressures are induced by caldera-collapse, resulting in magma plug-flow, rapid decompression facilitated by shear-localization at conduit margins, and explosive eruption.

 
more » « less
NSF-PAR ID:
10153853
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mafic volcanic activity is dominated by effusive to mildly explosive eruptions. Plinian and ignimbrite-forming mafic eruptions, while rare, are also possible; however, the conditions that promote such explosivity are still being explored. Eruption style is determined by the ability of gas to escape as magma ascends, which tends to be easier in low-viscosity, mafic magmas. If magma permeability is sufficiently high to reduce bubble overpressure during ascent, volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent may induce disequilibrium crystallization, increasing viscosity and affecting the bubble network with consequences for permeability, and hence, explosivity. To explore the conditions that promote strongly explosive mafic volcanism, we combine microlite textural analyses with synchrotron x-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile). We quantify microlite crystal size distributions (CSD), microlite number densities, porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by combing the Kozeny-Carman relationship, tortuosity factor, and pyroclast vesicle textures. The groundmass of our samples is composed of up to 44% plagioclase microlites, > 85% of which are < 10 µm in length. In addition, we identify two populations of vesicles in our samples: (1) a convoluted interconnected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore volume), and (2) a population of very small and completely isolated vesicles (< 1% of porosity). Computed permeability ranges from 3.0 × 10−13to 6.3 × 10−12m2, which are lower than the similarly explosive mafic eruptions of Tarawera (1886; New Zealand) and Etna (112 BC; Italy). The combination of our CSDs, microlite number densities, and 3D vesicle textures evidence rapid ascent that induced high disequilibrium conditions, promoting rapid syn-eruptive crystallization of microlites within the shallow conduit. We interpret that microlite crystallization increased viscosity while simultaneously forcing bubbles to deform as they grew together, resulting in the permeable by highly tortuous network of vesicles. Using the bubble number densities for the isolated vesicles (0.1-3−3 × 104 bubbles per mm3), we obtain a minimum average decompression rate of 1.4 MPa/s. Despite the textural evidence that the Curacautín magma reached the percolation threshold, we propose that rapid ascent suppressed outgassing and increased bubble overpressures, leading to explosive fragmentation. Further, using the porosity and permeability of our samples, we estimated that a bubble overpressure > 5 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium conditions may control the explosivity of mafic eruptions more generally.

     
    more » « less
  2. The faces of volcanic phenocrysts may be marked by imperfections occurring as holes that penetrate the crystal interior. When filled with glass these features, called embayments or reentrants, have been used to petrologically constrain magmatic ascent rate. Embayment ascent speedometry relies on the record of disequilibrium preserved as diffusion-limited volatile concentration gradients in the embayment glass. Clear, glassy embayments are carefully selected for speedometry studies. The use and subsequent descriptions of pristine embayments overrepresent their actual abundance. Here, we provide a textural analysis of the number, morphology, and filling characteristics of quartz-hosted embayments. We target a collection of large (i.e., >20 km3erupted volume) silicic eruptions, including the Bishop Tuff, Tuff of Bluff Point, Bandelier Tuff, Mesa Falls Tuff, and Huckleberry Ridge Tuff in the United States, Oruanui Tuff in New Zealand, Younger Toba Tuff in Indonesia, the Kos Plateau Tuff in Greece, and the Giant Pumice from La Primavera caldera in Mexico. For each unit, hundreds of quartz crystals were picked and the total number of embayment-hosting crystals were counted and categorized into classifications based on the vesicularity and morphology. We observed significant variability in embayment abundance, form, and vesicularity across different eruptions. Simple, cylindrical forms are the most common, as are dense glassy embayments. Increasingly complex shapes and a range of bubble textures are also common. Embayments may crosscut or deflect prominent internal cathodoluminescence banding in the host quartz, indicating that embayments form by both dissolution and growth. We propose potential additional timescales recorded by embayment disequilibrium textures, namely, faceting, bubbles, and the lack thereof. Embayment formation likely occurs tens to hundreds of years before eruption because embayment surfaces are rounded instead of faceted. Bubble textures in embayments are far from those predicted by equilibrium solubility. Homogenous nucleation conditions likely allow preservation of pressures much greater than magmastatic inside embayments. Our textural observations lend insight into embayment occurrence and formation and guide further embayment studies.

     
    more » « less
  3. null (Ed.)
    Abstract The Okataina Volcanic Centre (OVC), located in the Taupo Volcanic Zone, New Zealand, is a dominantly rhyolitic magmatic system in an arc setting, where eruptions are thought to be driven by mafic recharge. Here, Sr–Pb isotopes, and compositional and textural variations in plagioclase phenocrysts from 10 rhyolitic deposits (two caldera, one immediately post-caldera, four intra-caldera, and three extra-caldera) are used to investigate the OVC magmatic system and identify the sources and assimilants within this diverse mush zone. Plagioclase interiors exhibit normal and reverse zoning, and are commonly in disequilibrium with their accompanying glass, melt inclusions, and whole-rock compositions. This indicates that the crystals nucleated in melts that differed from their carrier magma. In contrast, the outermost rims of crystals exhibit normal zoning that is compositionally consistent with growth in cooling and fractionating melts just prior to eruption. At the intra-crystal scale, the total suite of 87Sr/86Sr ratios are highly variable (0·7042–0·7065 ± 0·0004 average 2SE); however, the majority (95 %) of the crystals are internally homogeneous within error. At whole-crystal scale (where better precision is obtained), 87Sr/86Sr ratios are much more homogeneous (0·70512–0·70543 ± 0·00001 average 2SE) and overlap with their host whole-rock Sr isotopic ratios. Whole-crystal Pb isotopic ratios also largely overlap with whole-rock Pb ratios. The plagioclase and whole-rock isotopic compositions indicate significant crustal assimilation (≥20 %) of Torlesse-like metasediments (local basement rock) by a depleted mid-ocean ridge mantle magma source, and Pb isotopes require variable fluid-dominant subduction flux. The new data support previous petrogenetic models for OVC magmas that require crystal growth in compositionally and thermally distinct magmas within a complex of disconnected melt-and-mush reservoirs. These reservoirs were rejuvenated by underplating basaltic magmas that serve as an eruption trigger. However, the outermost rims of the plagioclase imply that interaction between silicic melts and eruption-triggering mafic influx is largely limited to heat and volatile transfer, and results in rapid mobilization and syn-eruption mixing of rhyolitic melts. Finally, relatively uniform isotopic compositions of plagioclase indicate balanced contributions from the crust and mantle over the lifespan of the OVC magmatic system. 
    more » « less
  4. BSE mosaics of mushes and experimental products. Abstract: "We conducted experiments to study melt migration in crystal-rich mushes, with application to magma ascent within transcrustal magma reservoirs. Mushes with crystal volume fractions of 0.59 to 0.83 were prepared by hot-pressing crushed borosilicate glass mixed with different amounts quartz sand particles. Each experimental sample comprises stacked disks of mush and soda-lime glass, a proxy for crystal-free magma. Samples were subjected to confining pressures of 100 to 300 MPa and a temperature of 900°C (above the glass transition temperatures of the borosilicate and soda-lime glasses) for up to 6 h. The bottom and circumference of the mush and soda lime disks experience the confining pressure, but the top of the mush disks are at room pressure, resulting in a pore-pressure gradient across the mush layer. Following cooling and decompression, we determined the area fraction and morphology of soda-lime melt that migrated into the mush layer during experiments. Melt fraction is more strongly correlated to crystal fraction than pore-pressure gradient, increasing with crystal fraction before sharply decreasing as crystal fractions exceed 0.8. This change at 0.8 coincides with the transition from crystals in the mush moving during soda-lime migration to crystals forming a continuous rigid network. In our experiments, melt migration occurred by viscous fingering, but near the mobile-to-rigid transition, melt migration is enhanced by additional capillary action. Our results indicate that magma migration may peak when rigid mushes “unlock” to become mobile. This transition may mark an increase in magma migration, a potential precursor to volcanic unrest and eruption." Imaging: "Transverse sections cut from the top and/or bottom of the vacuum hot-pressed mushes were polished, carbon-coated, and imaged in BSE mode using the JEOL JXA-8530FPlus Electron Probe Microanalyzer (EPMA) at UMN (15 kV, 10 nA). About ten 50x magnification images were taken per sample and then compiled into BSE mosaics using Affinity Designer. The different compositions of the borosilicate glass and crystalline materials are distinguishable by greyscale in BSE images. [...] Following each experiment, sample assemblies were cut longitudinally along the cylindrical axis to produce sections for microstructural analysis. Scored samples (pHi-19s, Int-20s, Lo-21s) were cut again to produce sections tangential to the sample cylinder. Cut sections were vacuum impregnated with EpoFix resin and hand-polished on diamond lapping film from 30 to 0.5 μm grit. Polished and carbon-coated samples were imaged in BSE mode in the EPMA at UMN (15 kV, 10 nA). The different compositions of the soda-lime glass, borosilicate glass, and crystalline materials are distinguishable by greyscale in BSE images. Twenty to forty 50x magnification images were taken per sample and then compiled into sample-scale BSE mosaics using Affinity Designer." 
    more » « less
  5. Abstract

    The most explosive basaltic scoria cone eruption yet documented (>20 km high plumes) occurred at Sunset Crater (Arizona) ca. 1085 AD by undetermined eruptive mechanisms. We present melt inclusion analysis, including bubble contents by Raman spectroscopy, yielding high total CO2(approaching 6000 ppm) and S (~2000 ppm) with moderate H2O (~1.25 wt%). Two groups of melt inclusions are evident, classified by bubble vol%. Modeling of post-entrapment modification indicates that the group with larger bubbles formed as a result of heterogeneous entrapment of melt and exsolved CO2and provides evidence for an exsolved CO2phase at magma storage depths of ~15 km. We argue that this exsolved CO2phase played a critical role in driving this explosive eruption, possibly analogous to H2O exsolution driving silicic caldera-forming eruptions. Because of their distinct gas compositions relative to silicic magmas (high S and CO2), even modest volume explosive basaltic eruptions could impact the atmosphere.

     
    more » « less