Invasive plant species reduce the diversity of natives by altering habitats or disturbance regimes, but it is less clear whether they do so via competitive exclusion. Here, we show that invader abundance alters scale-dependent competitive effects of invasion on native plant richness. Large-seeded exotic annual
- Publication Date:
- NSF-PAR ID:
- 10153882
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Ecological communities often exhibit greater resistance to biological invasions when these communities consist of species that are not closely related. The effective size of this resistance, however, varies geographically. Here we investigate the drivers of this heterogeneity in the context of known contributions of native trees to the resistance of forests in the eastern United States of America to plant invasions. Using 42,626 spatially referenced forest community observations, we quantified spatial heterogeneity in relationships between evolutionary relatedness amongst native trees and both invasive plant species richness and cover. We then modelled the variability amongst the 91 ecological sections of our study area in the slopes of these relationships in response to three factors known to affect invasion and evolutionary relationships –environmental harshness (as estimated via tree height), relative tree density and environmental variability. Invasive species richness and cover declined in plots having less evolutionarily related native trees. The degree to which they did, however, varied considerably amongst ecological sections. This variability was explained by an ecological section’s mean maximum tree height and, to a lesser degree, SD in maximum tree height ( R 2 GLMM = 0.47 to 0.63). In general, less evolutionarily related native tree communities better resisted overallmore »
-
Abstract
This data package contains bird abundance data collected in plots that have had various plant functional groups or species experimentally removed at the Jornada Basin LTER site in southern New Mexico, USA. This data was collected in an effort to distinguish the differential effects of plant community biomass, plant community functional groups, and biodiversity within functional groups on plant community function, including effects on animals. To make these distinctions, treatments were established by the selective removal of plant species or functional groups within experimental plots. There are eight treatments: control (C, no removals); four functional group removal treatments (PG, perennial grass removed; S, shrubs removed; SSh, subshrubs removed; Succ, succulents removed), and three species richness manipulation treatments. Richness manipulations included a simplified treatment (Simp), where only the single most abundant species of each growth form is preserved and all other species in the growth form are removed, a reduced‐Larrea treatment (rL), where the Larrea is assumed to be the dominant and is removed while minority components remain, and a reduced-Prosopsis treatment (rP), where Prosopis rather than Larrea is removed as the shrub dominant. Following treatments, bird abundance and habitat preference data was collected in 1997. This data set consists -
Foundation species are vital to the maintenance of biodiversity and ecosystem functioning in many systems. On rocky shores, rockweeds (large brown algae in the Order Fucales) have the potential to provide habitat and ameliorate stress for mobile invertebrates. To determine the relative role of 2 rockweeds ( Silvetia compressa and Pelvetiopsis spp.) as foundation species at sites along a latitudinal gradient, we conducted observational surveys and then initiated a 12 mo removal experiment. We found that richness and abundance of mobile invertebrates declined over time when rockweeds were removed, but only at the southernmost site. In contrast, at our other sites, there was no change in the richness and abundance of mobile invertebrates following rockweed removal. At the southern site, rockweeds played an important role in maintaining mobile invertebrate diversity. At our central and northern sites, rockweeds were less important in maintaining the diversity of mobile invertebrates. At these sites, alternative species, including bladed and branching taxa in the genera Mastocarpus , Mazzaella , Corallina , and Endocladia , co-occur with rockweeds and can buffer the system against their loss. However, these alternative foundation species are rare to absent at the southern site, potentially due to greater physical stress. Themore »
-
Abstract Reducing invasive species abundance near the leading edge of invasions is important for maintaining diverse, high-functioning ecosystems, but it can be hard to remove invasives present at low levels within desirable plant communities. Focusing on an invasive annual grass, Bromus tectorum , near the edge of its range in the southern Colorado Plateau, we used an observational study to ask what plant community components were associated with lower levels of B. tectorum , and a manipulative experiment to ask if targeted spring grazing or seeding native competitors were effective for reversing low-level invasion. The observational study found that higher C 3 perennial grass cover and shrub cover were associated with lower B. tectorum abundance, and adult Poa fendleriana and Pascopyrum smithii plants had the fewest B. tectorum individuals within 50 cm. Our manipulative experiment used a randomized, hierarchical design to test the relative effectiveness of seeding native perennial grasses using different spatial planting arrangements, seeding rates, seed enhancements, and targeted spring grazing. Two years after seeding, seeded species establishment was 36% greater in high seed rate than unseeded plots, and high rate plots also had lower B. tectorum cover. One season after targeted spring grazing (a single, 2-week spring-grazing treatmentmore »
-
Disturbance plays a key role in shaping forest composition and diversity. We used a community phylogeny and long-term forest dynamics data to investigate biotic and abiotic factors shaping tropical forest regeneration following both human and natural disturbance. Specifically, we examined shifts in seedling phylogenetic and functional (i.e., seed mass) community structure over a decade following a major hurricane in a human-impacted forest in Puerto Rico. Phylogenetic relatedness of the seedling community decreased in the first five years post-hurricane and then increased, largely driven by changes in the abundance of a common palm species. Functional structure (based on seed mass) became increasingly clustered through time, due to canopy closure causing small-seeded, light-demanding species to decline in abundance. Seedling neighbor density and phylogenetic relatedness negatively affected seedling survival, which likely acted to reduce phylogenetic relatedness within seedling plots. Across the study site, areas impacted in the past by high-intensity land use had lower or similar phylogenetic relatedness of seedling communities than low-intensity past land use areas, reflecting interactive effects of human and natural disturbance. Our study demonstrates how phylogenetic and functional information offer insights into the role of biotic and abiotic factors structuring forest recovery following disturbance.