skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Mechanistic insights of enhanced spin polaron conduction in CuO through atomic doping
Abstract

The formation of a “spin polaron” stems from strong spin-charge-lattice interactions in magnetic oxides, which leads to a localization of carriers accompanied by local magnetic polarization and lattice distortion. For example, cupric oxide (CuO), which is a promising photocathode material and shares important similarities with highTcsuperconductors, conducts holes through spin polaron hopping with flipped spins at Cu atoms where a spin polaron has formed. The formation of these spin polarons results in an activated hopping conduction process where the carriers must not only overcome strong electron−phonon coupling but also strong magnetic coupling. Collectively, these effects cause low carrier conduction in CuO and hinder its applications. To overcome this fundamental limitation, we demonstrate from first-principles calculations how doping can improve hopping conduction through simultaneous improvement of hole concentration and hopping mobility in magnetic oxides such as CuO. Specifically, using Li doping as an example, we show that Li has a low ionization energy that improves hole concentration, and lowers the hopping barrier through both the electron−phonon and magnetic couplings' reduction that improves hopping mobility. Finally, this improved conduction predicted by theory is validated through the synthesis of Li-doped CuO electrodes which show enhanced photocurrent compared to pristine CuO electrodes. We conclude that doping with nonmagnetic shallow impurities is an effective strategy to improve hopping conductivities in magnetic oxides.

 
more » « less
Award ID(s):
1760260
NSF-PAR ID:
10153900
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
4
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transition metal oxides such as BiVO 4 are promising photoelectrode materials for solar-to-fuel conversion applications. However, their performance is limited by the low carrier mobility (especially electron mobility) due to the formation of small polarons. Recent experimental studies have shown improved carrier mobility and conductivity by atomic doping; however the underlying mechanism is not understood. A fundamental atomistic-level understanding of the effects on small polaron transport is critical to future material design with high conductivity. We studied the small polaron hopping mobility in pristine and doped BiVO 4 by combining Landau–Zener theory and kinetic Monte Carlo (kMC) simulation fully from first-principles, and investigated the effect of dopant–polaron interactions on the mobility. We found that polarons are spontaneously formed at V in both pristine and Mo/W doped BiVO 4 , which can only be described correctly by density functional theory (DFT) with the Hubbard correction (DFT+U) or hybrid exchange-correlation functional but not local or semi-local functionals. We found that DFT+U and dielectric dependant hybrid (DDH) functionals give similar electron hopping barriers, which are also similar between the room temperature monoclinic phase and the tetragonal phase. The calculated electron mobility agrees well with experimental values, which is around 10 −4 cm 2 V −1 s −1 . We found that the electron polaron transport in BiVO 4 is neither fully adiabatic nor nonadiabatic, and the first and second nearest neighbor hoppings have significantly different electronic couplings between two hopping centers that lead to different adiabaticity and prefactors in the charge transfer rate, although they have similar hopping barriers. Without considering the detailed adiabaticity through Landau–Zener theory, one may get qualitatively wrong carrier mobility. We further computed polaron mobility in the presence of different dopants and showed that Cr substitution of V is an electron trap while Mo and W are “repulsive” centers, mainly due to the minimization of local lattice expansion by dopants and electron polarons. The dopants with “repulsive” interactions to polarons are promising for mobility improvement due to larger wavefunction overlap and delocalization of locally concentrated polarons. 
    more » « less
  2. Abstract

    When periodically packing the intramolecular donor-acceptor structures to form ferroelectric-like lattice identified by second harmonic generation, our CD49 molecular crystal shows long-wavelength persistent photoluminescence peaked at 542 nm with the lifetime of 0.43 s, in addition to the short-wavelength prompt photoluminescence peaked at 363 nm with the lifetime of 0.45 ns. Interestingly, the long-wavelength persistent photoluminescence demonstrates magnetic field effects, showing as crystalline intermolecular charge-transfer excitons with singlet spin characteristics formed within ferroelectric-like lattice based on internal minority/majority carrier-balancing mechanism activated by isomer doping effects towards increasing electron-hole pairing probability. Our photoinduced Raman spectroscopy reveals the unusual slow relaxation of photoexcited lattice vibrations, indicating slow phonon effects occurring in ferroelectric-like lattice. Here, we show that crystalline intermolecular charge-transfer excitons are interacted with ferroelectric-like lattice, leading to exciton-lattice coupling within periodically packed intramolecular donor-acceptor structures to evolve ultralong-lived crystalline light-emitting states through slow phonon effects in ferroelectric light-emitting organic crystal.

     
    more » « less
  3. null (Ed.)
    Abstract Proton conduction is an important property for fuel cell electrolytes. The search for molecular details on proton transport is an ongoing quest. Here, we show that in hydrated yttrium doped barium zirconate using X-ray and neutron diffraction that protons tend to localize near the dopant yttrium as a conjugated superstructure. The proton jump time measured using quasi-elastic neutron scattering follows the Holstein-Samgin polaron model, revealing that proton hopping is weakly coupled to the high-frequency O-H stretching motion, but strongly coupled to low-frequency lattice phonons. The ratio of the proton polaron effective mass, m * , and the proton mass is m * / m  = 2, when coupled to the Zr-O stretching mode, giving experimental evidence of proton pairing in perovskites, as a result of proton-phonon coupling. Possible pathways of a proton pair are provided through Nudge Elastic Band calculations. The pairing of protons, when jumping, is discussed in context of a cooperative protonic charge transport process. 
    more » « less
  4. Abstract A magnon and a phonon are the quanta of spin wave and lattice wave, respectively, and they can hybridize into a magnon polaron when their frequencies and wavenumbers match close enough the values at the exceptional point. Guided by an analytically calculated magnon polaron dispersion, dynamical phase-field simulations are performed to investigate the effects of magnon polaron formation on the attenuation of a bulk acoustic wave in a magnetic insulator film. It is shown that a stronger magnon–phonon coupling leads to a larger attenuation. The simulations also demonstrate the existence of a minimum magnon–phonon interaction time required for the magnon polaron formation, which is found to decrease with the magnetoelastic coupling coefficient but increase with the magnetic damping coefficient. These results deepen the understanding of the mechanisms of acoustic attenuation in magnetic crystals and provide insights into the design of new-concept spin interconnects that operate based on acoustically driven magnon propagation. 
    more » « less
  5. Abstract

    Conjugated polyelectrolytes (CPEs) comprised of conjugated backbones and pendant ionic functionalities are versatile organic semiconductors with myriad optoelectronic applications. Although polarons are dominant charge carriers in conducting CPEs owing to strong electron‐phonon coupling, their properties are not well understood, especially from a first‐principles perspective. In this study, a comprehensive study on the stability, structural deformation, electronic structure, and optical absorption of positive (or hole)/negative (or electron) polarons and bi‐polarons in CPEs is conducted. It is explored how these properties depend on the electrostatic interaction between the polarons and ionic functionalities, including alkyl chains, ionic groups, and counterions. It is then examined how the bandgap, polaron binding energy, and optoelectronic structure of CPEs can be tuned by various combinations of the donor and acceptor units in their backbones. Finally, electrochemical stability of CPEs is studied and light is shed on the absence of negative polarons in CPEs. The strategy to improve the electrochemical stability of n‐doped CPEs is also discussed.

     
    more » « less