skip to main content


Title: Tasselseed5 overexpresses a wound-inducible enzyme, ZmCYP94B1, that affects jasmonate catabolism, sex determination, and plant architecture in maize
Abstract

Maize is monecious, with separate male and female inflorescences. Maize flowers are initially bisexual but achieve separate sexual identities through organ arrest. Loss-of-function mutants in the jasmonic acid (JA) pathway have only female flowers due to failure to abort silks in the tassel.Tasselseed5(Ts5) shares this phenotype but is dominant. Positional cloning and transcriptomics of tassels identified an ectopically expressed gene in the CYP94B subfamily,Ts5 (ZmCYP94B1). CYP94B enzymes are wound inducible and inactivate bioactive jasmonoyl-L-isoleucine (JA-Ile). Consistent with this result, tassels and wounded leaves ofTs5mutants displayed lower JA and JA-lle precursors and higher 12OH-JA-lle product than the wild type. Furthermore, many wounding and jasmonate pathway genes were differentially expressed inTs5tassels. We propose that theTs5phenotype results from the interruption of JA signaling during sexual differentiation via the upregulation ofZmCYP94B1and that its proper expression maintains maize monoecy.

 
more » « less
NSF-PAR ID:
10153905
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Volume:
2
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes inZea mays(maize). Here, we show that SCMV can also be applied for virus‐induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maizephytoene desaturase(PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS constructs targetingPDS,lesion mimic 22(Les22), andIodent japonica 1(Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression ofLes22andIj1was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate‐isoleucine (JA‐Ile) can be inactivated by 12C‐hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA‐Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, andNicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression ofZmCYP94B1(predicted JA‐Ile hydroxylase) andZmJIH1(predicted JA‐Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense‐related genes,Maize Proteinase Inhibitor(MPI) andRibosome Inactivating Protein 2(RIP2). AlthoughZmCYP94B1andZmJIH1gene expression silencing increased resistance toSpodoptera frugiperda(fall armyworm),Schistocerca americana(American birdwing grasshopper), andRhopalosiphum maidis(corn leaf aphid), there was no additive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses.

     
    more » « less
  2. Abstract

    The developmental genetics of reproductive structure control in maize must consider both the staminate florets of the tassel and the pistillate florets of the ear synflorescences. Pistil abortion takes place in the tassel florets, and stamen arrest is affected in ear florets to give rise to the monoecious nature of maize. Gibberellin (GA) deficiency results in increased tillering, a dwarfed plant syndrome, and the retention of anthers in the ear florets of maize. Thesilkless1mutant results in suppression of silks in the ear. We demonstrate in this study that jasmonic acid (JA) and GA act independently and show additive phenotypes resulting in androeciousdwarf1;silkless1double mutant plants. The persistence of pistils in the tassel can be induced by multiple mechanisms, including JA deficiency, GA excess, genetic control of floral determinacy, and organ identity. Thesilkless1mutant can suppress both silks in the ear and the silks in the tassel of JA‐deficient and AP2 transcription factortasselseedmutants. We previously demonstrated that GA production was required for brassinosteroid (BR) deficiency to affect persistence of pistils in the tassel. We find that BR deficiency affects pistil persistence by an independent mechanism from thesilkless1mutant and JA pathway. Thesilkless1mutant did not prevent the formation of pistils in the tassel bynana plant2in double mutants. In addition, we demonstrate that there is more to thesilkless1mutant than just a suppression of pistil growth. We document novel phenotypes ofsilkless1mutants including weakly penetrant ear fasciation and anther persistence in the ear florets. Thus, the JA/AP2 mechanism of pistil retention in the tassel and silk growth in the ear are similarly sensitive to loss of the SILKLESS1 protein, while the BR/GA mechanism is not.

     
    more » « less
  3. Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes in Zea mays (maize). Here, we show that SCMV can also be applied for virus-induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maize phytoene desaturase (PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS con- structs targeting PDS, lesion mimic 22 (Les22), and Iodent japonica 1 (Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression of Les22 and Ij1 was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate-isoleucine (JA-Ile) can be inactivated by 12C-hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA-Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, and Nicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression of ZmCYP94B1 (predicted JA-Ile hydroxylase) and ZmJIH1 (predicted JA- Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense-related genes, Maize Proteinase Inhibitor (MPI) and Ribosome Inactivating Pro- tein 2 (RIP2). Although ZmCYP94B1 and ZmJIH1 gene expression silencing increased resistance to Spodoptera frugiperda (fall armyworm), Schistocerca americana (American birdwing grasshopper), and Rhopalosiphum maidis (corn leaf aphid), there was no addi- tive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses. 
    more » « less
  4. Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes in Zea mays (maize). Here, we show that SCMV can also be applied for virus-induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maize phytoene desaturase (PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS constructs targeting PDS, lesion mimic 22 (Les22), and Iodent japonica 1 (Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression of Les22 and Ij1 was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate-isoleucine (JA-Ile) can be inactivated by 12C-hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA-Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, and Nicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression of ZmCYP94B1 (predicted JA-Ile hydroxylase) and ZmJIH1 (predicted JA-Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense-related genes, Maize Proteinase Inhibitor (MPI) and Ribosome Inactivating Protein 2 (RIP2). Although ZmCYP94B1 and ZmJIH1 gene expression silencing increased resistance to Spodoptera frugiperda (fall armyworm), Schistocerca americana (American birdwing grasshopper), and Rhopalosiphum maidis (corn leaf aphid), there was no additive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses. 
    more » « less
  5. Previously, sugarcane mosaic virus (SCMV) was developed as a vector for transient expression of heterologous genes in Zea mays (maize). Here, we show that SCMV can also be applied for virus-induced gene silencing (VIGS) of endogenous maize genes. Comparison of sense and antisense VIGS constructs targeting maize phytoene desaturase (PDS) showed that antisense constructs resulted in a greater reduction in gene expression. In a time course of gene expression after infection with VIGS constructs targeting PDS, lesion mimic 22 (Les22), and Iodent japonica 1 (Ij1), efficient expression silencing was observed 2, 3, and 4 weeks after infection with SCMV. However, at Week 5, expression of Les22 and Ij1 was no longer significantly reduced compared with control plants. The defense signaling molecule jasmonate-isoleucine (JA-Ile) can be inactivated by 12C-hydroxylation and hydrolysis, and knockout of these genes leads to herbivore resistance. JA-Ile hydroxylases and hydrolases have been investigated in Arabidopsis, rice, and Nicotiana attenuata. To determine whether the maize homologs of these genes function in plant defense, we silenced expression of ZmCYP94B1 (predicted JA-Ile hydroxylase) and ZmJIH1 (predicted JA-Ile hydrolase) by VIGS with SCMV, which resulted in elevated expression of two defense-related genes, Maize Proteinase Inhibitor (MPI) and Ribosome Inactivating Protein 2 (RIP2). Although ZmCYP94B1 and ZmJIH1 gene expression silencing increased resistance to Spodoptera frugiperda (fall armyworm), Schistocerca americana (American birdwing grasshopper), and Rhopalosiphum maidis (corn leaf aphid), there was no additive effect from silencing the expression of both genes. Further work will be required to determine the more precise functions of these enzymes in regulating maize defenses. 
    more » « less