skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: The role of energy storage in deep decarbonization of electricity production
Abstract

Deep decarbonization of electricity production is a societal challenge that can be achieved with high penetrations of variable renewable energy. We investigate the potential of energy storage technologies to reduce renewable curtailment and CO2emissions in California and Texas under varying emissions taxes. We show that without energy storage, adding 60 GW of renewables to California achieves 72% CO2reductions (relative to a zero-renewables case) with close to one third of renewables being curtailed. Some energy storage technologies, on the other hand, allow 90% CO2reductions from the same renewable penetrations with as little as 9% renewable curtailment. In Texas, the same renewable-deployment level leads to 54% emissions reductions with close to 3% renewable curtailment. Energy storage can allow 57% emissions reductions with as little as 0.3% renewable curtailment. We also find that generator flexibility can reduce curtailment and the amount of energy storage that is needed for renewable integration.

 
more » « less
PAR ID:
10153938
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Power grid resource adequacy can be difficult to ensure with high penetrations of intermittent renewable energy. We explore enhancing resource adequacy by overbuilding renewables while modeling statistical correlations in renewable power at different sites. Overbuilding allows production during times of low power, and exploiting statistical correlations can reduce power variability and, subsequently, reduce needed renewable capacity. In this work, we present a stochastic optimization problem to size renewables and expand transmission while minimizing the expected dispatch cost. Our method uses statistical profiles of renewable production and embeds network constraints using the DC power flow equations. We assess our method’s effects on feasibility, load shedding, locational marginal prices, and generator curtailment. On the IEEE 9-bus system, we found that anti-correlation between generators reduced generation capacity needs with sufficient transmission. On the IEEE 30-bus system, we found that the optimal solution required significant overbuilding and curtailment of renewables regardless of the marginal cost of schedulable generation. 
    more » « less
  2. Abstract

    High fractions of variable renewable electricity generation have challenged grid management within the balancing authority overseen by the California’s Independent System Operator (CAISO). In the early evening, solar resources tend to diminish as the system approaches peak demand, putting pressure on fast-responding, emissions-intensive natural gas generators. While residential precooling, a strategy intended to shift the timing of air-conditioning usage from peak-demand periods to cheaper off-peak periods, has been touted in the literature as being effective for reducing peak electricity usage and costs, we explore its impact on CO2emissions in regional grids like CAISO that have large disparities in their daytime versus nighttime emissions intensities. Here we use EnergyPlus to simulate precooling in a typical U.S. single-family home in California climate zone 9 to quantify the impact of precooling on peak electricity usage, CO2emissions, and residential utility costs. We find that replacing a constant-setpoint cooling schedule with a precooling schedule can reduce peak period electricity consumption by 57% and residential electricity costs by nearly 13%, while also reducing CO2emissions by 3.5%. These results suggest the traditional benefits of precooling can be achieved with an additional benefit of reducing CO2emissions in grids with high daytime renewable energy penetrations.

     
    more » « less
  3. Abstract

    As regional grids increase penetrations of variable renewable electricity (VRE) sources, demand-side management (DSM) presents an opportunity to reduce electricity-related emissions by shifting consumption patterns in a way that leverages the large diurnal fluctuations in the emissions intensity of the electricity fleet. Here we explore residential precooling, a type of DSM designed to shift the timing of air-conditioning (AC) loads from high-demand periods to periods earlier in the day, as a strategy to reduce peak period demand, CO2emissions, and residential electricity costs in the grid operated by the California Independent System Operator (CAISO). CAISO provides an interesting case study because it generally has high solar generation during the day that is replaced by fast-ramping natural gas generators when it drops off suddenly in the early evening. Hence, CAISO moves from a fleet of generators that are primarily clean and cheap to a generation fleet that is disproportionately emissions-intensive and expensive over a short period of time, creating an attractive opportunity for precooling. We use EnergyPlus to simulate 480 distinct precooling schedules for four single-family homes across California’s 16 building climate zones. We find that precooling a house during summer months in the climate zone characterizing Downtown Los Angeles can reduce peak period electricity consumption by 1–4 kWh d−1and cooling-related CO2emissions by as much as 0.3 kg CO2 d−1depending on single-family home design. We report results across climate zone and single-family home design and show that precooling can be used to achieve simultaneous reductions in emissions, residential electricity costs, and peak period electricity consumption for a variety of single-family homes and locations across California.

     
    more » « less
  4. Abstract

    The UN's Paris Agreement goal of keeping global warming between 1.5 and 2°C is dangerously obsolete and needs to be replaced by a commitment to restore Earth's climate. We now know that continued use of fossil fuels associated with 1.5–2°C scenarios would result in hundreds of millions of pollution deaths and likely trigger multiple tipping elements in the Earth system. Unexpected advances in renewable power production and storage have radically expanded our climate response capacity. The cost of renewable technologies has plummeted at least 30‐year faster than projected, and renewables now dominate energy investment and growth. Thisrenewable revolutioncreates an opportunity and responsibility to raise our climate ambitions. Rather than aiming for climate mitigation—making things less bad—we should commit to climate restoration—a rapid return to Holocene‐like climate conditions where we know humanity and life on Earth can thrive. Based on observed and projected energy system trends, we estimate that the global economy could reach zero emissions by 2040 and potentially return atmospheric CO2to pre‐industrial levels by 2100–2150. However, this would require an intense and sustained rollout of renewable energy and negative emissions technologies on very large scales. We describe these clean electrification scenarios and outline technical and socioeconomic strategies that would increase the likelihood of restoring a Holocene‐like climate in the next 100 years. We invite researchers, policymakers, regulators, educators, and citizens in all countries to share and promote this positive message of climate restoration for human wellbeing and planetary stability.

     
    more » « less
  5. Abstract

    Power system resource adequacy (RA), or its ability to continually balance energy supply and demand, underpins human and economic health. How meteorology affects RA and RA failures, particularly with increasing penetrations of renewables, is poorly understood. We characterize large-scale circulation patterns that drive RA failures in the Western U.S. at increasing wind and solar penetrations by integrating power system and synoptic meteorology methods. At up to 60% renewable penetration and across analyzed weather years, three high pressure patterns drive nearly all RA failures. The highest pressure anomaly is the dominant driver, accounting for 20-100% of risk hours and 43-100% of cumulative risk at 60% renewable penetration. The three high pressure patterns exhibit positive surface temperature anomalies, mixed surface solar radiation anomalies, and negative wind speed anomalies across our region, which collectively increase demand and decrease supply. Our characterized meteorological drivers align with meteorology during the California 2020 rolling blackouts, indicating continued vulnerability of power systems to these impactful weather patterns as renewables grow.

     
    more » « less