skip to main content

Title: A stomatal safety-efficiency trade-off constrains responses to leaf dehydration

Stomata, the microvalves on leaf surfaces, exert major influences across scales, from plant growth and productivity to global carbon and water cycling. Stomatal opening enables leaf photosynthesis, and plant growth and water use, whereas plant survival of drought depends on stomatal closure. Here we report that stomatal function is constrained by a safety-efficiency trade-off, such that species with greater stomatal conductance under high water availability (gmax) show greater sensitivity to closure during leaf dehydration, i.e., a higher leaf water potential at which stomatal conductance is reduced by 50% (Ψgs50). Thegmax- Ψgs50trade-off and its mechanistic basis is supported by experiments on leaves of California woody species, and in analyses of previous studies of the responses of diverse flowering plant species around the world. Linking the two fundamental key roles of stomata—the enabling of gas exchange, and the first defense against drought—this trade-off constrains the rates of water use and the drought sensitivity of leaves, with potential impacts on ecosystems.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in threePinus radiataclones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction inKroot‐rcaused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease inKplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery ofKroot‐randgs. Our results demonstrated that the reduction inKplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleafas water stress started. We concluded that higherKplant‐lis associated with water stress resistance by sustaining a less negative Ψleafand delaying stomatal closure.

    more » « less
  2. Abstract

    The degree of plant iso/anisohydry, a widely used framework for classifying species‐specific hydraulic strategies, integrates multiple components of the whole‐plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD‐induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade‐off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.

    more » « less
  3. Summary

    Given increasing water deficits across numerous ecosystems world‐wide, it is urgent to understand the sequence of failure of leaf function during dehydration.

    We assessed dehydration‐induced losses of rehydration capacity and maximum quantum yield of the photosystemII(Fv/Fm) in the leaves of 10 diverse angiosperm species, and tested when these occurred relative to turgor loss, declines of stomatal conductancegs, and hydraulic conductanceKleaf, including xylem and outside xylem pathways for the same study plants. We resolved the sequences of relative water content and leaf water potential Ψleafthresholds of functional impairment.

    On average, losses of leaf rehydration capacity occurred at dehydration beyond 50% declines ofgs,Kleafand turgor loss point. Losses ofFv/Fmoccurred after much stronger dehydration and were not recovered with leaf rehydration. Across species, tissue dehydration thresholds were intercorrelated, suggesting trait co‐selection. Thresholds for each type of functional decline were much less variable across species in terms of relative water content than Ψleaf.

    The stomatal and leaf hydraulic systems show early functional declines before cell integrity is lost. Substantial damage to the photochemical apparatus occurs at extreme dehydration, after complete stomatal closure, and seems to be irreversible.

    more » « less
  4. Abstract

    Tropical montane cloud forests support abundant epiphytic vascular plant communities that serve important ecosystem functions, but their reliance on atmospheric inputs of water may make them susceptible to the drying effects of rising cloud bases and more frequent droughts.

    We conducted a common garden experiment to explore the combined effects of decreasing cloud influence—lower humidity, warmer temperature, brighter light—and meteorological drought (i.e. absence of rain) on the physiology and morphology of vascular epiphytes native to primary forests of Monteverde, Costa Rica. The epiphytes, which exhibited C3photosynthesis, were sourced from a lower montane cloud forest (CF) or a rainforest (RF) below the current cloud base and transplanted into nearby shadehouses (CF or RF shadehouse respectively). Vapour pressure deficit (VPD) and light availability, measured as photosynthetically active radiation, were 2.5 and 3.1 times higher in the RF than the CF shadehouse. Half of the plants were subjected to a severe 4‐week drought followed by a recovery period, and the other half were watered controls.

    Plants subjected to low VPD/light conditions of the CF shadehouse were physiologically and morphologically resistant to the drought treatment. However, compared to control plants, both sources of plants subjected to high VPD/light conditions of the RF shadehouse experienced declines in maximum net photosynthesis (Amax), stomatal conductance (gs) and the proportion of healthy leaves (those not exhibiting chlorosis, desiccation or necrosis). At peak drought, leaves from the RF were 19% thinner than controls. Within 7–14 days after rewatering,Amax,gsand leaf health recovered to nearly the levels of controls. Growth rate, mortality and phenology were unaffected by the treatments.

    The divergent responses to drought in the CF versus RF shadehouses, combined with the recovery in the RF shadehouse, indicate that these epiphytes possess adaptive properties that confer low resistance, but high recovery capacity, to episodes of short‐term drought over a range of cloud influence. In addition, the reduction inAmaxsuggests stomatal regulation that favours water conservation over carbon acquisition, a strategy that may inform epiphyte responses to rising clouds and increasing drought frequency expected in the long term.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less
  5. Stomatal closure limits transpiration during drought, restricting water potential decline and delaying the onset of embolism. While critical for ensuring survival during drought, the mechanisms driving stomatal closure during drought remain equivocal. The hormone abscisic acid (ABA) will close stomata in seed plants and is synthesized as leaf turgor declines. ABA driven stomatal closure during drought is particularly apparent in species that are more isohydric. In contrast, in species that have a more anisohydric response to drought, like Fagus sylvatica, the importance of ABA in driving stomatal closure during drought is often overlooked or excluded, in place of a hypothesized passive, water potential driven stomatal closure. Here we investigated whether ABA drives stomata closure during a mid-summer drought in field grown F. sylvatica. We found that as leaf water potential declines during a drought, foliage abscisic acid (ABA) levels increase considerably and stomata close. ABA levels in leaves increase as water potentials decline to within 0.3 MPa of turgor loss point, when stomata close. Foliage ABA levels correlate with stomatal conductance throughout a drought and post-drought period. From these results we argue that it is hard to exclude increased ABA levels driving stomatal closure during drought in the anisohydric species F. sylvatica. 
    more » « less