skip to main content


Title: Oligodendrocytes express synaptic proteins that modulate myelin sheath formation
Abstract

Vesicular release from neurons promotes myelin sheath growth on axons. Oligodendrocytes express proteins that allow dendrites to respond to vesicular release at synapses, suggesting that axon-myelin contacts use similar communication mechanisms as synapses to form myelin sheaths. To test this, we used fusion proteins to track synaptic vesicle localization and membrane fusion in zebrafish during developmental myelination and investigated expression and localization of PSD95, a dendritic post-synaptic protein, within oligodendrocytes. Synaptic vesicles accumulate and exocytose at ensheathment sites with variable patterning and most sheaths localize PSD95 with patterning similar to exocytosis site location. Disruption of candidate PDZ-binding transsynaptic adhesion proteins in oligodendrocytes cause variable effects on sheath length and number. One candidate, Cadm1b, localizes to myelin sheaths where both PDZ binding and extracellular adhesion to axons mediate sheath growth. Our work raises the possibility that axon-glial communication contributes to myelin plasticity, providing new targets for mechanistic unraveling of developmental myelination.

 
more » « less
NSF-PAR ID:
10153954
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oligodendrocytes (OLs), the myelinating cell type of the CNS, interact with a plethora of diverse neuronal subtypes but only wrap a select subset with myelin sheaths. Prior to initiating axon wrapping, OLs dynamically extend and retract membrane processes in order to contact and sample numerous axons. Whether neural activity-dependent mechanisms regulate exploratory axon sampling, target axon recognition, and stabilization of OL-axon interactions prior to initial axon wrapping is unknown. To test this, we directly observed interactions between pre-myelinating OL processes and individually labeled target axons in larval zebrafish using time-lapse confocal microscopy. In control larvae anesthetized with the neuromuscular blocker pancuronium bromide, we observed dynamic axon sampling characterized by frequent formation and turnover of OL-axon interactions. In contrast, treatment with the neural activity blocker tricaine methanesulfonate (MS-222) caused reduced frequency of new interaction formation, increased interaction duration, and reduced frequency of interaction retraction. Time-lapse imaging revealed differential effects on OL-axon interactions at axon varicosities and thin, intervening segments. Specifically, the destabilizing effects of neural activity on OL-axon interactions were heightened at axon varicosities. MS-222 increased contact durations at varicosities but not at neighboring intervening segments. Neural activity manipulations also influenced the dynamics of axon varicosity formation, lifetime, and turnover, raising the possibility that changes to axon morphology or local properties could direct OL-axon interactions and subsequent myelination. Taken together, we conclude that neural activity negatively regulates the duration of OL-axon interactions prior to initial axon wrapping and myelination. These findings support a mechanism whereby neural activity plays opposing roles on OL-axon interactions before and after initial myelin ensheathment. Prior to ensheathment, neural activity destabilizes interactions, which may serve to facilitate increased overall sampling of potential wrapping sites. After successful ensheathment, neural activity stabilizes OL-axon adhesion in order to promote continued growth and maturation of the myelin sheath. Current and future studies aim to understand the reciprocal effects between OL processes and axon morphology, and the effects of synaptic vesicle release during initial OL-axon interactions. 
    more » « less
  2. In the developing central nervous system, pre-myelinating oligodendrocytes contact and sample candidate nerve axons by extending and retracting process extensions. Some contacts stabilize and mature, leading to the initiation of axon wrapping, myelin sheath formation, and sheath elongation by oligodendrocytes. Although axonal signals influence the overall process of myelination, which precise steps and oligodendrocyte cell behaviors require signaling from axons is incompletely understood. In this study, we investigated whether cell behaviors during the early events of myelination involve input from axons or are mediated by an oligodendrocyte-autonomous myelination program. To address this, we utilized in vivo time-lapse imaging in embryonic and larval zebrafish during the initial hours and days of axon wrapping and myelination. Transgenic reporter lines marked individual axon subtypes or oligodendrocyte membranes. In the larval zebrafish spinal cord, individual axon subtypes supported distinct nascent sheath growth rates and pruning frequencies. Oligodendrocytes ensheathed individual axon subtypes at different rates during a two-day period after initial axon wrapping. When the ratio of oligodendrocytes to target axons was increased by ablating spinal projection axons, local spinal neuron axons supported a constant ensheathment rate despite the increased ratio of oligodendrocytes to target axons. We conclude that properties of individual axon subtypes instruct oligodendrocyte behaviors during initial stages of myelination by differentially controlling nascent sheath growth and stabilization. 
    more » « less
  3. null (Ed.)
    Abstract Background In the developing central nervous system, pre-myelinating oligodendrocytes sample candidate nerve axons by extending and retracting process extensions. Some contacts stabilize, leading to the initiation of axon wrapping, nascent myelin sheath formation, concentric wrapping and sheath elongation, and sheath stabilization or pruning by oligodendrocytes. Although axonal signals influence the overall process of myelination, the precise oligodendrocyte behaviors that require signaling from axons are not completely understood. In this study, we investigated whether oligodendrocyte behaviors during the early events of myelination are mediated by an oligodendrocyte-intrinsic myelination program or are over-ridden by axonal factors. Methods To address this, we utilized in vivo time-lapse imaging in embryonic and larval zebrafish spinal cord during the initial hours and days of axon wrapping and myelination. Transgenic reporter lines marked individual axon subtypes or oligodendrocyte membranes. Results In the larval zebrafish spinal cord, individual axon subtypes supported distinct nascent sheath growth rates and stabilization frequencies. Oligodendrocytes ensheathed individual axon subtypes at different rates during a two-day period after initial axon wrapping. When descending reticulospinal axons were ablated, local spinal axons supported a constant ensheathment rate despite the increased ratio of oligodendrocytes to target axons. Conclusion We conclude that properties of individual axon subtypes instruct oligodendrocyte behaviors during initial stages of myelination by differentially controlling nascent sheath growth and stabilization. 
    more » « less
  4. Abstract Harmful algal blooms (HABs) produce neurotoxins that affect human health. Developmental exposure of zebrafish embryos to the HAB toxin domoic acid (DomA) causes myelin defects, loss of reticulospinal neurons, and behavioral deficits. However, it is unclear whether DomA primarily targets myelin sheaths, leading to the loss of reticulospinal neurons, or reticulospinal neurons, causing myelin defects. Here, we show that while exposure to DomA at 2 dpf did not reduce the number of oligodendrocyte precursors prior to myelination, it led to fewer myelinating oligodendrocytes that produced shorter myelin sheaths and aberrantly wrapped neuron cell bodies. DomA-exposed larvae lacked Mauthner neurons prior to the onset of myelination, suggesting that axonal loss is not secondary to myelin defects. The loss of the axonal targets may have led oligodendrocytes to inappropriately myelinate neuronal cell bodies. Consistent with this, GANT61, a GLI1/2 inhibitor that reduces oligodendrocyte number, caused a reduction in aberrantly myelinated neuron cell bodies in DomA-exposed fish. Together, these results suggest that DomA initially alters reticulospinal neurons and the loss of axons causes aberrant myelination of nearby cell bodies. The identification of initial targets and perturbed cellular processes provides a mechanistic understanding of how DomA alters neurodevelopment, leading to structural and behavioral phenotypes. 
    more » « less
  5. In the CNS, oligodendrocyte progenitor cells (OPCs) differentiate into mature oligodendrocytes to generate myelin, an essential component for normal nervous system function. OPC differentiation is driven by signaling pathways, such as mTOR, which functions in two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), containing Raptor or Rictor, respectively. In the current studies, mTORC2 signaling was selectively deleted from OPCs in PDGFRα-Cre X Rictorfl/flmice. This study examined developmental myelination in male and female mice, comparing the impact of mTORC2 deletion in the corpus callosum and spinal cord. In both regions, Rictor loss in OPCs resulted in early reduction in myelin RNAs and proteins. However, these deficits rapidly recovered in spinal cord, where normal myelin was noted at P21 and P45. By contrast, the losses in corpus callosum resulted in severe hypomyelination and increased unmyelinated axons. The hypomyelination may result from decreased oligodendrocytes in the corpus callosum, which persisted in animals as old as postnatal day 350. The current studies focus on uniquely altered signaling pathways following mTORC2 loss in developing oligodendrocytes. A major mTORC2 substrate is phospho-Akt-S473, which was significantly reduced throughout development in both corpus callosum and spinal cord at all ages measured, yet this had little impact in spinal cord. Loss of mTORC2 signaling resulted in decreased expression of actin regulators, such as gelsolin in corpus callosum, but only minimal loss in spinal cord. The current study establishes a regionally specific role for mTORC2 signaling in OPCs, particularly in the corpus callosum.

    SIGNIFICANCE STATEMENTmTORC1 and mTORC2 signaling has differential impact on myelination in the CNS. Numerous studies identify a role for mTORC1, but deletion of Rictor (mTORC2 signaling) in late-stage oligodendrocytes had little impact on myelination in the CNS. However, the current studies establish that deletion of mTORC2 signaling from oligodendrocyte progenitor cells results in reduced myelination of brain axons. These studies also establish a regional impact of mTORC2, with little change in spinal cord in these conditional Rictor deletion mice. Importantly, in both brain and spinal cord, mTORC2 downstream signaling targets were impacted by Rictor deletion. Yet, these signaling changes had little impact on myelination in spinal cord, while they resulted in long-term alterations in myelination in brain.

     
    more » « less