skip to main content


Title: Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination
Abstract

Shifting electrochemical oxygen reduction towards 2epathway to hydrogen peroxide (H2O2), instead of the traditional 4eto water, becomes increasingly important as a green method for H2O2generation. Here, through a flexible control of oxygen reduction pathways on different transition metal single atom coordination in carbon nanotube, we discovered Fe-C-O as an efficient H2O2catalyst, with an unprecedented onset of 0.822 V versus reversible hydrogen electrode in 0.1 M KOH to deliver 0.1 mA cm−2H2O2current, and a high H2O2selectivity of above 95% in both alkaline and neutral pH. A wide range tuning of 2e/4eORR pathways was achieved via different metal centers or neighboring metalloid coordination. Density functional theory calculations indicate that the Fe-C-O motifs, in a sharp contrast to the well-known Fe-C-N for 4e, are responsible for the H2O2pathway. This iron single atom catalyst demonstrated an effective water disinfection as a representative application.

 
more » « less
NSF-PAR ID:
10153956
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-assembled metallacyles and cages formed via coordination chemistry have been used as catalysts to enforce 4H + /4e − reduction of oxygen to water with an emphasis on attenuating the formation of hydrogen peroxide. That said, the kinetically favored 2H + /2e − reduction to H 2 O 2 is critically important to industry. In this work we report the synthesis, characterization, and electrochemical benchmarking of a hexa-porphyrin cube which catalyses the electrochemical reduction of molecular oxygen to hydrogen peroxide. An established sub-component self-assembly approach was used to synthesize the cubic free-base porphryin topologies from 2-pyridinecarboxaldehyde, tetra-4-aminophenylporphryin (TAPP), and Fe(OTf) 2 (OTf − = trifluoromethansulfonate). Then, a tandem metalation/transmetallation was used to introduce Co( ii ) into the porphyrin faces of the cube, and exchange with the Fe( ii ) cations at the vertices, furnishing a tetrakaideca cobalt cage. Electron paramagnetic resonance studies on a Cu( ii )/Fe( ii ) analogue probed radical interactions which inform on electronic structure. The efficacy and selectivity of the CoCo-cube as a catalyst for hydrogen peroxide generation was investigated using hydrodynamic voltammetry, revealing a higher selectivity than that of a mononuclear Co( ii ) porphyrin (83% versus ∼50%) with orders of magnitude enhancement in standard rate constant ( k s = 2.2 × 10 2 M −1 s −1 versus k s = 3 × 10 0 M −1 s −1 ). This work expands the use of coordination-driven self-assembly beyond ORR to water by exploiting post-synthetic modification and structural control that is associated with this synthetic method. 
    more » « less
  2. Abstract

    The hydrogen peroxide (H2O2) generation via the electrochemical oxygen reduction reaction (ORR) under ambient conditions is emerging as an alternative and green strategy to the traditional energy‐intensive anthraquinone process and unsafe direct synthesis using H2and O2. It enables on‐site and decentralized H2O2production using air and renewable electricity for various applications. Currently, atomically dispersed single metal site catalysts have emerged as the most promising platinum group metal (PGM)‐free electrocatalysts for the ORR. Further tuning their central metal sites, coordination environments, and local structures can be highly active and selective for H2O2production via the 2eORR. Herein, recent methodologies and achievements on developing single metal site catalysts for selective O2to H2O2reduction are summarized. Combined with theoretical computation and advanced characterization, a structure–property correlation to guide rational catalyst design with a favorable 2eORR process is aimed to provide. Due to the oxidative nature of H2O2and the derived free radicals, catalyst stability and effective solutions to improve catalyst tolerance to H2O2are emphasized. Transferring intrinsic catalyst properties to electrode performance for viable applications always remains a grand challenge. The key performance metrics and knowledge during the electrolyzer development are, therefore, highlighted.

     
    more » « less
  3. Abstract

    Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm−2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.

     
    more » « less
  4. null (Ed.)
    Electrochemical synthesis of hydrogen peroxide (H 2 O 2 ) in acidic solution can enable the electro-Fenton process for decentralized environmental remediation, but robust and inexpensive electrocatalysts for the selective two-electron oxygen reduction reaction (2e − ORR) are lacking. Here, we present a joint computational/experimental study that shows both structural polymorphs of earth-abundant cobalt diselenide (orthorhombic o -CoSe 2 and cubic c -CoSe 2 ) are stable against surface oxidation and catalyst leaching due to the weak O* binding to Se sites, are highly active and selective for the 2e − ORR, and deliver higher kinetic current densities for H 2 O 2 production than the state-of-the-art noble metal or single-atom catalysts in acidic solution. o -CoSe 2 nanowires directly grown on carbon paper electrodes allow for the steady bulk electrosynthesis of H 2 O 2 in 0.05 M H 2 SO 4 with a practically useful accumulated concentration of 547 ppm, the highest among the reported 2e − ORR catalysts in acidic solution. Such efficient and stable H 2 O 2 electrogeneration further enables the effective electro-Fenton process for model organic pollutant degradation. 
    more » « less
  5. Abstract

    High‐performance and inexpensive platinum‐group‐metal (PGM)‐free catalysts for the oxygen reduction reaction (ORR) in challenging acidic media are crucial for proton‐exchange‐membrane fuel cells (PEMFCs). Catalysts based on Fe and N codoped carbon (Fe–N–C) have demonstrated promising activity and stability. However, a serious concern is the Fenton reactions between Fe2+and H2O2generating active free radicals, which likely cause degradation of the catalysts, organic ionomers within electrodes, and polymer membranes used in PEMFCs. Alternatively, Co–N–C catalysts with mitigated Fenton reactions have been explored as a promising replacement for Fe and PGM catalysts. Therefore, herein, the focus is on Co–N–C catalysts for the ORR relevant to PEMFC applications. Catalyst synthesis, structure/morphology, activity and stability improvement, and reaction mechanisms are discussed in detail. Combining experimental and theoretical understanding, the aim is to elucidate the structure–property correlations and provide guidance for rational design of advanced Co catalysts with a special emphasis on atomically dispersed single‐metal‐site catalysts. In the meantime, to reduce H2O2generation during the ORR on the Co catalysts, potential strategies are outlined to minimize the detrimental effect on fuel cell durability.

     
    more » « less