skip to main content


Title: CuInSe2 nanotube arrays for efficient solar energy conversion
Abstract

Highly uniform and vertically alignedp-type CuInSe2(CISe) nanotube arrays were fabricated through a unique protocol, incorporating confined electrodeposition on lithographically patterned nanoelectrodes. This protocol can be readily adapted to fabricate nanotube arrays of other photoabsorber and functional materials with precisely controllable design parameters. Ternary CISe nanotube arrays were electrodeposited congruently from a single electrolytic bath and the resulting nanotube arrays were studied through powder X-ray diffraction as well as elemental analysis which revealed compositional purity. Detailed photoelectrochemical (PEC) characterizations in a liquid junction cell were also carried out to investigate the photoconversion efficiency. It was observed that the tubular geometry had a strong influence on the photocurrent response and a 29.9% improvement of the photoconversion efficiency was observed with the nanotube array compared to a thin film geometry fabricated by the same process. More interestingly such enhancement in photoconversion efficiency was obtained when the electrode coverage with the nanotube arrays as photoactive material was only a fraction (~10%) of that for the thin film device. Apart from enhancement in photoconversion efficiency, this versatile technique provides ample opportunities to study novel photovoltaic materials and device design architectures where structural parameters play a key role such as resonant light trapping.

 
more » « less
NSF-PAR ID:
10153964
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
9
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Solution processing of CuInSe 2 /CuInGaSe 2 (CISe/CIGSe) photovoltaic devices via non-hydrazine based routes has been studied for the past few years and a significant improvement in the device performance has been achieved for multiple solvent routes. However, none of these routes have ever reported the fabrication of absorbers with a thickness of above 1.2–1.3 microns which is almost half of what has been traditionally used in vacuum based high efficiency CIGSe devices. The main reason for this limitation is associated with the formation of a fine-grain layer in solution based systems. Here we manipulate the formation of such a fine-grain layer in an amine–thiol based solution route through surface modifications at the bottom Mo interface and achieve an active area efficiency of up to 14.1% for CIGSe devices. Furthermore, with a detailed analysis of the fine-grain layer, not just in the amine–thiol based film, but also in the film fabricated via the dimethylformamide-thiourea route, we identify the reason for the formation of such a fine-grain layer as the presence of the sulfide material and carbon impurity (if any) in the precursor film. We utilize the amine–thiol solvent system's ability for selenium and metal selenide dissolution to manipulate the ink formulations and demonstrate the reduction in the formation of sulfide materials as well as the extent of trapped carbon in the precursor film. With modified precursor films, we then successfully grow CISe/CIGSe thin films of 2-micron thickness with the complete absence of a fine-grain layer through a high temperature, thickness independent bulk growth mechanism making the film morphology similar to the one fabricated using a high efficiency hydrazine based route. 
    more » « less
  2. Abstract

    In the past years, hybrid perovskite materials have attracted great attention due to their superior optoelectronic properties. In this study, the authors report the utilization of cobalt (Co2+) to partially substitute lead (Pb2+) for developing novel hybrid perovskite materials, CH3NH3Pb1‐xCoxI3(wherexis nominal ratio,x= 0, 0.1, 0.2 and 0.4). It is found that the novel perovskite thin films possess a cubic crystal structure with superior thin film morphology and larger grain size, which is significantly different from pristine thin film, which possesses the tetragonal crystal structure, with smaller grain size. Moreover, it is found that the 3d orbital of Co2+ensures higher electron mobilities and electrical conductivities of the CH3NH3Pb1‐xCoxI3thin films than those of pristine CH3NH3Pb4thin film. As a result, a power conversion efficiency of 21.43% is observed from perovskite solar cells fabricated by the CH3NH3Pb0.9Co0.1I3thin film. Thus, the utilization of Co, partially substituting for Pb to tune physical properties of hybrid perovskite materials provides a facile way to boost device performance of perovskite solar cells.

     
    more » « less
  3. Abstract

    Semiconducting molecules have been employed to passivate traps extant in the perovskite film for enhancement of perovskite solar cells (PSCs) efficiency and stability. A molecular design strategy to passivate the defects both on the surface and interior of the CH3NH3PbI3perovskite layer, using two phthalocyanine (Pc) molecules (NP‐SC6‐ZnPc andNP‐SC6‐TiOPc) is demonstrated. The presence of lone electron pairs on S, N, and O atoms of the Pc molecular structures provides the opportunity for Lewis acid–base interactions with under‐coordinated Pb2+sites, leading to efficient defect passivation of the perovskite layer. The tendency of bothNP‐SC6‐ZnPc andNP‐SC6‐TiOPc to relax on the PbI2terminated surface of the perovskite layer is also studied using density functional theory (DFT) calculations. The morphology of the perovskite layer is improved due to employing the Pc passivation strategy, resulting in high‐quality thin films with a dense and compact structure and lower surface roughness. UsingNP‐SC6‐ZnPc andNP‐SC6‐TiOPc as passivating agents, it is observed considerably enhanced power conversion efficiencies (PCEs), from 17.67% for the PSCs based on the pristine perovskite film to 19.39% forNP‐SC6‐TiOPc passivated devices. Moreover, PSCs fabricated based on the Pc passivation method present a remarkable stability under conditions of high moisture and temperature levels.

     
    more » « less
  4. Abstract

    Solid‐oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure–property relationships that would enable the rational design of better materials. Here, using epitaxial thin‐film growth, synchrotron radiation, impedance spectroscopy, and density‐functional theory, the impact of structural parameters (i.e., unit‐cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9Sr0.1Ga0.95Mg0.05O3–δ. As compared to the zero‐strain state, compressive strain reduces the unit‐cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit‐cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit‐cell volumes and octahedral rotations decrease migration barriers and create low‐energy migration pathways, respectively. The desired combination of large unit‐cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit‐cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈2.5 at around 600 °C is observed, which sheds new light on the rational design of ion‐conducting perovskite electrolytes.

     
    more » « less
  5. Abstract

    New light is shed on the previously known perovskite material, Cs2Au2I6, as a potential active material for high‐efficiency thin‐film Pb‐free photovoltaic cells. First‐principles calculations demonstrate that Cs2Au2I6has an optimal band gap that is close to the Shockley–Queisser value. The band gap size is governed by intermediate band formation. Charge disproportionation on Au makes Cs2Au2I6a double‐perovskite material, although it is stoichiometrically a single perovskite. In contrast to most previously discussed double perovskites, Cs2Au2I6has a direct‐band‐gap feature, and optical simulation predicts that a very thin layer of active material is sufficient to achieve a high photoconversion efficiency using a polycrystalline film layer. The already confirmed synthesizability of this material, coupled with the state‐of‐the‐art multiscale simulations connecting from the material to the device, strongly suggests that Cs2Au2I6will serve as the active material in highly efficient, nontoxic, and thin‐film perovskite solar cells in the very near future.

     
    more » « less