skip to main content

Title: Signature of adaptive evolution in olfactory receptor genes in Cory’s Shearwater supports molecular basis for smell in procellariiform seabirds
Abstract

Olfactory receptors (ORs), encoded by the largest vertebrate multigene family, enable the detection of thousands of unique odorants in the environment and consequently play a critical role in species survival. Here, we advance our knowledge of OR gene evolution in procellariiform seabirds, an avian group which relies on the sense of olfaction for critical ecological functions. We built a cosmid library of Cory’s Shearwater (Calonectris borealis) genomic DNA, a model species for the study of olfaction-based navigation, and sequence OR gene-positive cosmid clones with a combination of sequencing technologies. We identified 220 OR open reading frames, 20 of which are full length, intact OR genes, and found a large ratio of partial and pseudogenes to intact OR genes (2:1), suggestive of a dynamic mode of evolution. Phylogenetic analyses revealed that while a few genes cluster with those of other sauropsid species in aγ(gamma) clade that predates the divergence of different avian lineages, most genes belong to an avian-specificγ-c clade, within which sequences cluster by species, suggesting frequent duplication and/or gene conversion events. We identified evidence of positive selection on full lengthγ-c clade genes. These patterns are consistent with a key role of adaptation in the functional diversification of olfactory more » receptor genes in a bird lineage that relies extensively on olfaction.

« less
Authors:
; ; ; ; ;
Publication Date:
NSF-PAR ID:
10153979
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Mammalian olfactory receptor genes (ORs) are a diverse family of genes encoding proteins that directly interact with environmental chemical cues. ORs evolve via gene duplication in a birth-death fashion, neofunctionalizing and pseudogenizing over time. Olfaction is a primary sense used for food detection in plant-visiting bats, but the relationship between dietary specialization and OR repertoire diversity is unclear. Within neotropical Leaf-nosed bats (Phyllostomidae), many lineages are plant specialists, and some have a distinct OR repertoire compared to insectivorous species. Yet, whether specialization on particular plant genera is associated with the evolution of specialized, less diverse OR repertoires has nevermore »been tested. Using targeted sequence capture, we sequenced the OR repertoires of three sympatric species of short-tailed fruit bats (Carollia), which vary in their degree of specialization on the fruits of Piper plants. We characterized orthologous vs duplicated receptors among Carollia species, and explored the diversity and redundancy of the receptor gene repertoire. At the species level, the most dedicated Piper specialist, Carollia castanea, had lower OR diversity compared to the two generalists (C. sowelli and C. perspicillata), but we discovered a few unique sets of ORs within C. castanea with high redundancy of similar gene duplicates. These unique receptors potentially enable C. castanea to detect Piper fruit odorants better than its two congeners. Carollia perspicillata, the species with the most generalist diet, had a higher diversity of intact receptors, suggesting the ability to detect a wider range of odorant molecules. Variation among ORs may be a factor in the coexistence of these sympatric species, facilitating the exploitation of different plant resources. Our study sheds light on how gene duplication and changes in OR diversity may play a role in dietary adaptations and underlie ecological interactions between bats and plants.« less
  2. Abstract

    Hummingbirds utilize visual cues to locate flowers, but little is known about the role olfaction plays in nectar foraging despite observations that hummingbirds avoid resources occupied by certain insects. We investigated the behavioral responses of both wild and captive hummingbirds to olfactory cues of hymenopteran floral visitors, including native wood ants (Formica francoeuri), invasive Argentine ants (Linepithema humile), and European honeybees (Apis mellifera). We demonstrate for the first time that hummingbirds use olfaction to make foraging decisions when presented with insect-derived chemical cues under field and aviary conditions. Both wild and captive hummingbirds avoided foraging on feeders with defensive chemicalsmore »ofF. francoeuriand aggregation pheromones ofL. humile, but showed no response to honeybee cuticular hydrocarbons. Our experiments demonstrate the importance of olfaction in shaping hummingbird foraging decisions.

    Significance statement

    Recent reviews reveal that avian olfaction is not just limited to vultures and a few taxa. We demonstrate that a very charismatic group, hummingbirds, avoid defensive and aggregatory chemical cues from insects present at nectar resources. Olfactory cues can provide critical information about the presence and potential threat of insect floral visitors. This study raises new questions about the underrated importance of olfaction in avian foraging and specifically, hummingbird foraging.

    « less
  3. Abstract Background

    How vascular systems and their respiratory pigments evolved is still debated. While many animals present a vascular system, hemoglobin exists as a blood pigment only in a few groups (vertebrates, annelids, a few arthropod and mollusk species). Hemoglobins are formed of globin sub-units, belonging to multigene families, in various multimeric assemblages. It was so far unclear whether hemoglobin families from different bilaterian groups had a common origin.

    Results

    To unravel globin evolution in bilaterians, we studied the marine annelidPlatynereis dumerilii,a species with a slow evolving genome.Platynereisexhibits a closed vascular system filled with extracellular hemoglobin.Platynereisgenome and transcriptomes reveal a family ofmore »19 globins, nine of which are predicted to be extracellular. Extracellular globins are produced by specialized cells lining the vessels of the segmental appendages of the worm, serving as gills, and thus likely participate in the assembly of a previously characterized annelid-specific giant hemoglobin. Extracellular globin mRNAs are absent in smaller juveniles, accumulate considerably in growing and more active worms and peak in swarming adults, as the need for O2culminates. Next, we conducted a metazoan-wide phylogenetic analysis of globins using data from complete genomes. We establish that five globin genes (stem globins) were present in the last common ancestor of bilaterians. Based on these results, we propose a new nomenclature of globins, with five clades. All five ancestral stem-globin clades are retained in some spiralians, while some clades disappeared early in deuterostome and ecdysozoan evolution.All known bilaterian blood globin families are grouped in a single clade (clade I) together with intracellular globins of bilaterians devoid of red blood.

    Conclusions

    We uncover a complex “pre-blood” evolution of globins, with an early gene radiation in ancestral bilaterians. Circulating hemoglobins in various bilaterian groups evolved convergently, presumably in correlation with animal size and activity. However, all hemoglobins derive from a clade I globin, or cytoglobin, probably involved in intracellular O2transit and regulation. The annelidPlatynereisis remarkable in having a large family of extracellular blood globins, while retaining all clades of ancestral bilaterian globins.

    « less
  4. While evolvability of genes and traits may promote specialization during species diversification, how ecology subsequently restricts such variation remains unclear. Chemosensation requires animals to decipher a complex chemical background to locate fitness-related resources, and thus the underlying genomic architecture and morphology must cope with constant exposure to a changing odorant landscape; detecting adaptation amidst extensive chemosensory diversity is an open challenge. In phyllostomid bats, an ecologically diverse clade that evolved plant-visiting from an insectivorous ancestor, the evolution of novel food detection mechanisms is suggested to be a key innovation, as plant-visiting species rely strongly on olfaction, supplementarily using echolocation. Ifmore »this is true, exceptional variation in underlying olfactory genes and phenotypes may have preceded dietary diversification. We compared olfactory receptor (OR) genes sequenced from olfactory epithelium transcriptomes and olfactory epithelium surface area of bats with differing diets. Surprisingly, although OR evolution rates were quite variable and generally high, they are largely independent of diet. Olfactory epithelial surface area, however, is relatively larger in plant-visiting bats and there is an inverse relationship between OR evolution rates and surface area. Relatively larger surface areas suggest greater reliance on olfactory detection and stronger constraint on maintaining an already diverse OR repertoire. Instead of the typical case in which specialization and elaboration are coupled with rapid diversification of associated genes, here the relevant genes are already evolving so quickly that increased reliance on smell has led to stabilizing selection, presumably to maintain the ability to consistently discriminate among specific odorants — a potential ecological constraint on sensory evolution.« less
  5. Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR),more »the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemoneAiptasia pallidathat engages in a symbiosis withSymbiodinium minutum(clade B1). Experimental blocking of the SR ligand binding site with the inhibitor fucoidan reduced the ability ofS. minutumto colonizeA. pallidasuggesting that host SRs play a role in host-symbiont recognition. In addition, incubation of symbiotic anemones with fucoidan elicited an immune response, indicating that host SRs function in immune modulation that results in host tolerance of the symbionts.

    « less