skip to main content


Title: Cryogenic Memory Architecture Integrating Spin Hall Effect based Magnetic Memory and Superconductive Cryotron Devices
Abstract

One of the most challenging obstacles to realizing exascale computing is minimizing the energy consumption of L2 cache, main memory, and interconnects to that memory. For promising cryogenic computing schemes utilizing Josephson junction superconducting logic, this obstacle is exacerbated by the cryogenic system requirements that expose the technology’s lack of high-density, high-speed and power-efficient memory. Here we demonstrate an array of cryogenic memory cells consisting of a non-volatile three-terminal magnetic tunnel junction element driven by the spin Hall effect, combined with a superconducting heater-cryotron bit-select element. The write energy of these memory elements is roughly 8 pJ with a bit-select element, designed to achieve a minimum overhead power consumption of about 30%. Individual magnetic memory cells measured at 4 K show reliable switching with write error rates below 10−6, and a 4 × 4 array can be fully addressed with bit select error rates of 10−6. This demonstration is a first step towards a full cryogenic memory architecture targeting energy and performance specifications appropriate for applications in superconducting high performance and quantum computing control systems, which require significant memory resources operating at 4 K.

 
more » « less
NSF-PAR ID:
10153980
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phase Change Memory (PCM) is an attractive candidate for main memory, as it offers non-volatility and zero leakage power while providing higher cell densities, longer data retention time, and higher capacity scaling compared to DRAM. In PCM, data is stored in the crystalline or amorphous state of the phase change material. The typical electrically controlled PCM (EPCM), however, suffers from longer write latency and higher write energy compared to DRAM and limited multi-level cell (MLC) capacities. These challenges limit the performance of data-intensive applications running on computing systems with EPCMs.

    Recently, researchers demonstrated optically controlled PCM (OPCM) cells with support for 5bits/cellin contrast to 2bits/cellin EPCM. These OPCM cells can be accessed directly with optical signals that are multiplexed in high-bandwidth-density silicon-photonic links. The higher MLC capacity in OPCM and the direct cell access using optical signals enable an increased read/write throughput and lower energy per access than EPCM. However, due to the direct cell access using optical signals, OPCM systems cannot be designed using conventional memory architecture. We need a complete redesign of the memory architecture that is tailored to the properties of OPCM technology.

    This article presents the design of a unified network and main memory system called COSMOS that combines OPCM and silicon-photonic links to achieve high memory throughput. COSMOS is composed of a hierarchical multi-banked OPCM array with novel read and write access protocols. COSMOS uses an Electrical-Optical-Electrical (E-O-E) control unit to map standard DRAM read/write commands (sent in electrical domain) from the memory controller on to optical signals that access the OPCM cells. Our evaluation of a 2.5D-integrated system containing a processor and COSMOS demonstrates2.14 ×average speedup across graph and HPC workloads compared to an EPCM system. COSMOS consumes3.8×lower read energy-per-bit and5.97×lower write energy-per-bit compared to EPCM. COSMOS is the first non-volatile memory that provides comparable performance and energy consumption as DDR5 in addition to increased bit density, higher area efficiency, and improved scalability.

     
    more » « less
  2. Deoxyribonucleic acid (DNA) has emerged as a promising building block for designing next-generation ultra-high density storage devices. Although DNA is highly durable and extremely high density in nature, its potential as the basis of storage devices is currently hindered by limitations such as expensive and complex fabrication processes and time-consuming read-write operations. In this article, we propose the use of a DNA crossbar array architecture for an electrically-readable Read-Only Memory (DNA-ROM). For DNA-ROM, we have chosen two DNA strands for representing Bit 1 and Bit 0 respectively. DNA charge transport has been studied through a contact-DNA-contact setup. The results obtained from the DNA charge transport study have been used to analyze the crossbar array. The performance has been analyzed by loading an image onto a 128×128 crossbar. For this application, we have observed a bit error rate of 4.52% and power consumption of 6.75 µW. 
    more » « less
  3. In this paper we propose a Highly Flexible InMemory (HieIM) computing platform using STT MRAM, which can be leveraged to implement Boolean logic functions without sacrificing memory functionality. It could pre-process data within memory to further reduce power hungry long distance communication between memory and processing units as in Von-Neumann computing system. HieIM can implement all the Boolean logic functions (AND/NAND, OR/NOR, XOR/XNOR) between any two cells in the same memory array, thus overcoming the `operand locality' problem in contemporary in-memory computing platform designs. To investigate the performance of HieIM, we test in-memory bulk bit-wise Boolean logic operations using different vector datasets, which shows ~ 8x energy saving and ~ 5x speedup compared to recent DRAM based in-memory computing platform. We further implement an in-memory data encryption engine design based on HieIM as another case study. With AES algorithm, it shows 51.5% and 68.9% lower energy consumption compared to CMOS-ASIC and CMOL based implementations, respectively. 
    more » « less
  4. Abstract

    Deoxyribonucleic acid (DNA) has emerged as a promising building block for next-generation ultra-high density storage devices. Although DNA has high durability and extremely high density in nature, its potential as the basis of storage devices is currently hindered by limitations such as expensive and complex fabrication processes and time-consuming read–write operations. In this article, we propose the use of a DNA crossbar array architecture for an electrically readable read-only memory (DNA-ROM). While information can be ‘written’ error-free to a DNA-ROM array using appropriate sequence encodings its read accuracy can be affected by several factors such as array size, interconnect resistance, and Fermi energy deviations from HOMO levels of DNA strands employed in the crossbar. We study the impact of array size and interconnect resistance on the bit error rate of a DNA-ROM array through extensive Monte Carlo simulations. We have also analyzed the performance of our proposed DNA crossbar array for an image storage application, as a function of array size and interconnect resistance. While we expect that future advances in bioengineering and materials science will address some of the fabrication challenges associated with DNA crossbar arrays, we believe that the comprehensive body of results we present in this paper establishes the technical viability of DNA crossbar arrays as low power, high-density storage devices. Finally, our analysis of array performance vis-à-vis interconnect resistance should provide valuable insights into aspects of the fabrication process such as proper choice of interconnects necessary for ensuring high read accuracies.

     
    more » « less
  5. The emerging resistive random access memory (ReRAM) technology has been deemed as one of the most promising alternatives to DRAM in main memories, due to its better scalability, zero cell leakage and short read latency. The cross-point (CP) array enables ReRAM to obtain the theoretical minimum 4F^2 cell size by placing a cell at the cross-point of a word-line and a bit-line. However, ReRAM CP arrays suffer from large sneak current resulting in significant voltage drop that greatly prolongs the array RESET latency. Although prior works reduce the voltage drop in CP arrays, they either substantially increase the array peripheral overhead or cannot work well with wear leveling schemes. In this paper, we propose two array micro-architecture level techniques, dynamic RESET voltage regulation (DRVR) and partition RESET (PR), to mitigate voltage drop on both bit-lines and word-lines in ReRAM CP arrays. DRVR dynamically provides higher RESET voltage to the cells far from the write driver and thus encountering larger voltage drop on a bit-line, so that all cells on a bit-line share approximately the same latency during RESETs. PR decides how many and which cells to reset online to partition the CP array into multiple equivalent circuits with smaller word-line resistance and voltage drop. Because DRVR and PR greatly reduce the array RESET latency, the ReRAM-based main memory lifetime under the worst case non-stop write traffic significantly decreases. To increase the CP array endurance, we further upgrade DRVR by providing lower RESET voltage to the cells suffering from less voltage drop on a word-line. Our experimental results show that, compared to the combination of prior voltage drop reduction techniques, our DRVR and PR improve the system performance by 11.7% and decrease the energy consumption by 46% averagely, while still maintaining >10-year main memory system lifetime. 
    more » « less