skip to main content


Title: Aluminum with dispersed nanoparticles by laser additive manufacturing
Abstract

While laser-printed metals do not tend to match the mechanical properties and thermal stability of conventionally-processed metals, incorporating and dispersing nanoparticles in them should enhance their performance. However, this remains difficult to do during laser additive manufacturing. Here, we show that aluminum reinforced by nanoparticles can be deposited layer-by-layer via laser melting of nanocomposite powders, which enhance the laser absorption by almost one order of magnitude compared to pure aluminum powders. The laser printed nanocomposite delivers a yield strength of up to 1000 MPa, plasticity over 10%, and Young’s modulus of approximately 200 GPa, offering one of the highest specific Young’s modulus and specific yield strengths among structural metals, as well as an improved specific strength and thermal stability up to 400 °C compared to other aluminum-based materials. The improved performance is attributed to a high density of well-dispersed nanoparticles, strong interfacial bonding between nanoparticles and Al matrix, and ultrafine grain sizes.

 
more » « less
NSF-PAR ID:
10154028
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
10
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Boron nitride nanotubes (BNNTs) are the perfect candidate for nanofillers in high-temperature multifunctional ceramics due to their high thermal stability, oxidation resistance, good mechanical properties, high thermal conductivity, and radiation shielding. In this paper, 3D printed ceramic nanocomposite with 0.1 wt% of BNNT was prepared by fusing it at high temperatures. Samples were built with three different print directions to study the effect of print layers on mechanical performance along with BNNT addition. Dynamic mechanical analysis is performed to study the length effect of nanoscale reinforcements on the mechanical properties of the printed ceramic composites reporting significant improvements up to 55% in bending strength and 72% in bending modulus with just 0.1 wt% BNNT addition. A 63% thermal diffusivity improvement of ceramic by adding BNNTs is observed using laser flash analysis. The bridging and pull-out effect of nanotubes with a longer aspect ratio was observed with high-resolution microscopy. Such composites’ modeling and simulation approaches are crucial for virtual testing and industrial applications. Understanding the effect of nanoscale synthetic fillers for 3D printed high-temperature ceramics can revolutionize future extreme environment structures. 
    more » « less
  2. 3D printing of thermoplastics through local melting and deposition via Material Extrusion Additive Manufacturing provides a simple route to the near net-shape manufacture of complex objects. However, the mechanical properties resulting from these 3D printed structures tend to be inferior when compared to traditionally manufactured thermoplastics. These unfavorable characteristics are generally attributed to the structure of the interface between printed roads. Here, we illustrate how the molecular mass distribution for a model thermoplastic, poly(methyl methacrylate) (PMMA), can be tuned to enhance the Young’s modulus of 3D printed plastics. Engineering the molecular mass distribution alters the entanglement density, which controls the strength of the PMMA in the solid state and the chain diffusion in the melt. Increasing the low molecular mass tail increases Young’s modulus and ultimate tensile strength of the printed parts. These changes in mechanical properties are comparable to more complex routes previously reported involving new chemistry or nanoparticles. Controlling the molecular mass distribution provides a simple route to improve the performance in 3D printing of thermoplastics that can be as effective as more complex approaches. 
    more » « less
  3. null (Ed.)
    Abstract

    Selective laser sintering (SLS) technology produces a substantial amount of un-sintered polyamide 12 powders after the manufacturing process. Failure to recycle and reuse these aged powders not only leads to economic losses but also is environmentally unfriendly. This is particularly problematic for powder particles close to the heat-affected zones that go through severe thermal degradations during the laser sintering processes. Limited procedures exist for systematically reusing such extremely aged powders. This work proposes a systematic method to maximize reusability of aged and extremely aged polyamide 12 powders. Building on a previously untapped interlayer heating, pre-processing, and a systematic mixing of powder materials, we show how reclaimed polyamide 12 powders can be consistently reprinted into functional samples, with mechanical properties even superior to current industrial norms. In particular, the proposed method can yield printed samples with 18.04% higher tensile strength and 55.29% larger elongation at break using as much as 30% of extremely aged powders compared to the benchmark sample.

     
    more » « less
  4. null (Ed.)
    Fully biodegradable unidirectional green composites with excellent tensile properties were fabricated by combining one of the highest specific strength liquid crystalline cellulose (LCC) fibers as the reinforcement and microfibrillated cellulose (MFC) strengthened nonedible avocado seed starch (AVS)-based resin. MFC/AVS resin was crosslinked using 1,2,3,4-butane tetracarboxylic acid as well as plasticized using sorbitol or glycerol. Combination of alkali, mechanical and thermal treatments improved LCC fiber fracture stress from 1.5 GPa to over 1.9 GPa and Young’s modulus from 49 to 64 GPa. While the type and amount of plasticizer used changed the fracture strain of MFC/AVS resin, they also showed significant influence on the mechanical properties of the unidirectional composites. These composites prepared by hand lay-up, based on modified LCC fibers resulted in fracture stress of over 380 MPa and Young’s modulus of 19.5 GPa with less than 40% fiber content. Results suggest that there is scope to improve the properties further by using higher fiber content and automated manufacturing. These ‘green’ composites with excellent strength and stiffness may be used in many applications such as construction, automobile and others. 
    more » « less
  5. Abstract

    Solidification phenomenon has been an integral part of the manufacturing processes of metals, where the quantification of stochastic variations and manufacturing uncertainties is critically important. Accurate molecular dynamics (MD) simulations of metal solidification and the resulting properties require excessive computational expenses for probabilistic stochastic analyses where thousands of random realizations are necessary. The adoption of inadequate model sizes and time scales in MD simulations leads to inaccuracies in each random realization, causing a large cumulative statistical error in the probabilistic results obtained through Monte Carlo (MC) simulations. In this work, we present a machine learning (ML) approach, as a data-driven surrogate to MD simulations, which only needs a few MD simulations. This efficient yet high-fidelity ML approach enables MC simulations for full-scale probabilistic characterization of solidified metal properties considering stochasticity in influencing factors like temperature and strain rate. Unlike conventional ML models, the proposed hybrid polynomial correlated function expansion here, being a Bayesian ML approach, is data efficient. Further, it can account for the effect of uncertainty in training data by exploiting mean and standard deviation of the MD simulations, which in principle addresses the issue of repeatability in stochastic simulations with low variance. Stochastic numerical results for solidified aluminum are presented here based on complete probabilistic uncertainty quantification of mechanical properties like Young’s modulus, yield strength and ultimate strength, illustrating that the proposed error-inclusive data-driven framework can reasonably predict the properties with a significant level of computational efficiency.

     
    more » « less