Sensor‐based, semicontinuous observations of water quality parameters have become critical to understanding how changes in land use, management, and rainfall‐runoff processes impact water quality at diurnal to multidecadal scales. While some commercially available water quality sensors function adequately under a range of turbidity conditions, other instruments, including those used to measure nutrient concentrations, cease to function in high turbidity waters (> 100 nephelometric turbidity units [NTU]) commonly found in large rivers, arid‐land rivers, and coastal areas. This is particularly true during storm events, when increases in turbidity are often concurrent with increases in nutrient transport. Here, we present the development and validation of a system that can affordably provide Self‐Cleaning FiLtrAtion for Water quaLity SenSors (SC‐FLAWLeSS), and enables long‐term, semicontinuous data collection in highly turbid waters. The SC‐FLAWLeSS system features a three‐step filtration process where: (1) a coarse screen at the inlet removes particles with diameter > 397
Water quality is undergoing significant deterioration due to bacteria, pollutants and other harmful particles, damaging aquatic life and lowering the quality of drinking water. It is, therefore, important to be able to rapidly and accurately measure water quality in a cost-effective manner using e.g., a turbidimeter. Turbidimeters typically use different illumination angles to measure the scattering and transmittance of light through a sample and translate these readings into a measurement based on the standard nephelometric turbidity unit (NTU). Traditional turbidimeters have high sensitivity and specificity, but they are not field-portable and require electricity to operate in field settings. Here we present a field-portable and cost effective turbidimeter that is based on a smartphone. This mobile turbidimeter contains an opto-mechanical attachment coupled to the rear camera of the smartphone, which contains two white light-emitting-diodes to illuminate the water sample, optical fibers to transmit the light collected from the sample to the camera, an external lens for image formation, and diffusers for uniform illumination of the sample. Including the smartphone, this cost-effective device weighs only ~350 g. In our mobile turbidimeter design, we combined two illumination approaches: transmittance, in which the optical fibers were placed directly below the sample cuvette at 180° with respect to the light source, and nephelometry in which the optical fibers were placed on the sides of the sample cuvette at a 90°angle with respect to the to the light source. Images of the end facets of these fiber optic cables were captured using the smart phone and processed using a custom written image processing algorithm to automatically quantify the turbidity of each sample. Using transmittance and nephelometric readings, our mobile turbidimeter achieved accurate measurements over a large dynamic range, from 0.3 NTU to 2000 NTU. The accurate performance of our smartphone-based turbidimeter was also confirmed with various water samples collected in Los Angeles (USA), bacteria spiked water samples, as well as diesel fuel contaminated water samples. Having a detection limit of ~0.3 NTU, this cost-effective smartphone-based turbidimeter can be a useful analytical tool for screening of water quality in resource limited settings.
more » « less- PAR ID:
- 10154037
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract μ m, (2) a settling tank precipitates and then removes particles with diameters between 10 and 397μ m, and (3) a self‐cleaning, low‐cost, hollow fiber membrane technology removes particles ≥ 0.2μ m. We tested the SC‐FLAWLeSS system by measuring nitrate sensor data loss during controlled, serial sediment additions in the laboratory and validated it by monitoring soluble phosphate concentrations in the arid Rio Grande river (New Mexico, U.S.A.), at hourly sampling resolution. Our data demonstrate that the system can resolve turbidity‐related interference issues faced by in situ optical and wet chemistry sensors, even at turbidity levels > 10,000 NTU. -
A smartphone-integrated dielectrophoretic (SiDEP) platform is presented for on-site and real-time monitoring of fecal indicator bacteria (FIB) to examine the presence and concentration levels of fecal contamination in environmental water via loop-mediated isothermal amplification (LAMP) assays on a smartphone. Experimental demonstrations have verified the SiDEP’s capabilities for (1) on-chip water sample processing, (2) portable LAMP assays, and (3) colorimetric analysis of fecal water quality. The SiDEP truly offers a low-cost, portable, and fully-integrated system enabling rapid on-site detection of the presence of FIB and their associated pathogens in environmental water without the need for sophisticated laboratory equipment or skilled personnel.more » « less
-
A lab-on-a-smartphone (LOS) presents a portable environmental sensing tool that enables the monitoring of water quality by performing various detection techniques such as smartphone-integrated fluorescence microscopy and portable loop-mediated amplification (LAMP) assays. The LOS can conduct multiple laboratory functions and has experimentally demonstrated (1) automated on-chip water sample processing, (2) on-site fluorescent detection of harmful algae cells, and (3) fecal contamination of water through LAMP assays. The LOS can overcome conventional labor-intensive and time-consuming techniques for the monitoring of microbiological contaminants in environment waters.more » « less
-
The increasing prevalence of three-dimensional (3D) printing of optical housings and mounts necessitates a better understanding of the optical properties of printing materials. This paper describes a method for using multithickness samples of 3D printing materials to measure transmittance spectra at wavelengths from 400 to 2400 nm [visible to short-wave infrared (IR)]. In this method, 3D samples with material thicknesses of 1, 2, 3, and 4 mm were positioned in front of a uniform light source with a spectrometer probe on the opposing side to measure the light transmittance. Transmission depended primarily on the thickness and color of the sample, and multiple scattering prevented the use of a simple exponential model to relate transmittance, extinction, and thickness. A Solidworks file and a 3D printer file are included with the paper to enable measurements of additional materials with the same method.
-
Monitoring chemical levels is crucial for safeguarding both the environment and public health. Elevated levels of ammonia, for instance, can harm both humans and aquatic ecosystems, often indicating contamination from agriculture, industry, or sewage. Developing portable, high-resolution, and affordable methods for in situ monitoring of ammonia is thus imperative. Plasmonic sensors offer a promising solution, detecting ammonia by correlating changes in their optical response to the target analyte’s concentration. While they are highly sensitive and can be fabricated in a variety of portable and user-friendly formats, some still require reagents or expensive optical equipment, which hinder their widespread adoption. Here, we present a self-assembled nanoplasmonic colorimetric sensor capable of directly detecting ammonia concentrations in aqueous matrices. The proposed sensor exploits the plasmonic resonance of the nanostructures to transduce changes in the chemical environment into alterations in color, offering a label-free method for real-time analysis. The sensor is fabricated using a self-assembling technique compatible with low-cost mass production based on aluminum and aluminum oxide, ensuring affordability and avoiding the use of other toxic chemicals. We developed a model to predict ammonia concentrations based on visible color change of the sensor, achieving a detection limit of 8.5 ppm. Furthermore, to address the need for on-site detection, we integrated smartphone technology for real-time color change analysis, eliminating the need for expensive, bulky optical instruments. Indeed, our approach offers a cost-effective, portable, and user-friendly solution for ammonia detection in water without the need for chemical reagents or spectrometers, making it ideal for field applications. Interestingly, this platform extends its applicability beyond ammonia detection, enabling the monitoring of various chemicals using a smartphone, without the need for any additional costly equipment.more » « less