skip to main content


Title: MicroRNA-mRNA Interactions at Low Levels of Compressive Solid Stress Implicate mir-548 in Increased Glioblastoma Cell Motility
Abstract

Glioblastoma (GBM) is an astrocytic brain tumor with median survival times of <15 months, primarily as a result of high infiltrative potential and development of resistance to therapy (i.e., surgical resection, chemoradiotherapy). A prominent feature of the GBM microenvironment is compressive solid stress (CSS) caused by uninhibited tumor growth within the confined skull. Here, we utilized a mechanical compression model to apply CSS (<115 Pa) to well-characterized LN229 and U251 GBM cell lines and measured their motility, morphology, and transcriptomic response. Whereas both cell lines displayed a peak in migration at 23 Pa, cells displayed differential response to CSS with either minimal (i.e., U251) or large changes in motility (i.e., LN229). Increased migration of LN229 cells was also correlated to increased cell elongation. These changes were tied to epigenetic signaling associated with increased migration and decreases in proliferation predicted via Ingenuity® Pathway Analysis (IPA), characteristics associated with tumor aggressiveness. miRNA-mRNA interaction analysis revealed strong influence of the miR548 family (i.e., mir-548aj, mir-548az, mir-548t) on differential signaling induced by CSS, suggesting potential targets for pharmaceutical intervention that may improve patient outcomes.

 
more » « less
NSF-PAR ID:
10154047
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Glioblastoma (GBM), characterized by high infiltrative capacity, is the most common and deadly type of primary brain tumor in adults. GBM cells, including therapy‐resistant glioblastoma stem‐like cells (GSCs), invade the healthy brain parenchyma to form secondary tumors even after patients undergo surgical resection and chemoradiotherapy. New techniques are therefore urgently needed to eradicate these residual tumor cells. A thiol‐Michael addition injectable hydrogel for compatibility with GBM therapy is previously characterized and optimized. This study aims to develop the hydrogel further to capture GBM/GSCs through CXCL12‐mediated chemotaxis. The release kinetics of hydrogel payloads are investigated, migration and invasion assays in response to chemoattractants are performed, and the GBM‐hydrogel interactions in vitro are studied. With a novel dual‐layer hydrogel platform, it is demonstrated that CXCL12 released from the synthetic hydrogel can induce the migration of U251 GBM cells and GSCs from the extracellular matrix microenvironment and promote invasion into the synthetic hydrogel via amoeboid migration. The survival of GBM cells entrapped deep into the synthetic hydrogel is limited, while live cells near the surface reinforce the hydrogel through fibronectin deposition. This synthetic hydrogel, therefore, demonstrates a promising method to attract and capture migratory GBM cells and GSCs responsive to CXCL12 chemotaxis.

     
    more » « less
  2. Fusobacterium nucleatumis implicated in accelerating colorectal cancer (CRC) and is found within metastatic CRC cells in patient biopsies. Here, we found that bacterial invasion of CRC cells and cocultured immune cells induced a differential cytokine secretion that may contribute to CRC metastasis. We used a modified galactose kinase markerless gene deletion approach and found thatF. nucleatuminvaded cultured HCT116 CRC cells through the bacterial surface adhesin Fap2. In turn, Fap2-dependent invasion induced the secretion of the proinflammatory cytokines IL-8 and CXCL1, which are associated with CRC progression and promoted HCT116 cell migration. Conditioned medium fromF. nucleatum–infected HCT116 cells caused naïve cells to migrate, which was blocked by depleting CXCL1 and IL-8 from the conditioned medium. Cytokine secretion from HCT116 cells and cellular migration were attenuated by inhibitingF. nucleatumhost-cell binding and entry using galactose sugars,l-arginine, neutralizing membrane protein antibodies, orfap2deletion.F. nucleatumalso induces the mobilization of immune cells in the tumor microenvironment. However, in neutrophils and macrophages, the bacterial-induced secretion of cytokines was Fap2 independent. Thus, our findings show thatF. nucleatumboth directly and indirectly modulates immune and cancer cell signaling and migration. Because increased IL-8 and CXCL1 production in tumors is associated with increased metastatic potential and cell seeding, poor prognosis, and enhanced recruitment of tumor-associated macrophages and fibroblasts, we propose that inhibition of host-cell binding and invasion, potentially through vaccination or novel galactoside compounds, could be an effective strategy for reducingF. nucleatum–associated CRC metastasis.

     
    more » « less
  3. Abstract Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of the TIPE/TNFAIP8 family which regulates tumor growth and survival. Our goal is to delineate the detailed oncogenic role of TNFAIP8 in skin cancer development and progression. Here we demonstrated that higher expression of TNFAIP8 is associated with basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma development in patient tissues. Induction of TNFAIP8 expression by TNFα or by ectopic expression of TNFAIP8 in SCC or melanoma cell lines resulted in increased cell growth/proliferation. Conversely, silencing of TNFAIP8 decreased cell survival/cell migration in skin cancer cells. We also showed that miR-205-5p targets the 3′UTR of TNFAIP8 and inhibits TNFAIP8 expression. Moreover, miR-205-5p downregulates TNFAIP8 mediated cellular autophagy, increased sensitivity towards the B-RAF V600E mutant kinase inhibitor vemurafenib, and induced cell apoptosis in melanoma cells. Collectively our data indicate that miR-205-5p acts as a tumor suppressor in skin cancer by targeting TNFAIP8. 
    more » « less
  4. Senescence is a potent tumor-suppressive mechanism that irreversibly arrests the growth of damaged cells. However, senescent cells that accumulate in tissues eventually develop a senescence-associated secretory phenotype (SASP) that alters the microenvironment to promote cancer. Paracrine factors in the SASP may also contribute to the formation of rare giant polyploidal cancer cells (GPCCs). A single-cell mechanical approach was used to profile cytoskeletal and nuclear mechanics, morphology, motility, and adhesion for breast cancer cells treated with conditioned media from senescent fibroblasts. Our study showed that a small but significant population of MDA-MB-231 breast cancer cells (less than 5%) treated with conditioned media from senescent LF-1 fibroblasts develop an enlarged morphology, chromosomal instability, and polyploidy, a phenotype associated with GPCCs. Although GPCCs are highly invasive and chemoresistant, little is known about their biophysical properties. First, we developed a method for identifying the small subpopulation of GPCCs in a heterogeneous population of cancer cells based on increased nuclear area and confirmed that GPCCs are more resistant to paclitaxel than normal-size MDA-MB-231 cells (NCCs). We then compared critical biophysical properties of NCCs and GPCCs, including cytoskeletal and nuclear mechanics, cell and nuclear morphology, motility, and adhesion. Cells were stained for cytoskeletal proteins actin, tubulin, and vinculin. Cytoskeletal organization was dramatically altered in GPCCs compared to NCCs. GPCCs displayed more disorganized microtubule structure, dense actin stress fibers, and mature focal adhesions. Intracellular particle tracking microrheology was used to measure cytoskeletal and nuclear mechanics. These studies demonstrated that although GPCCs are thought to be highly invasive cancer cells, they are inherently stiffer than NCCs, in terms of both their cytoskeletal and nuclear mechanics. This was surprising since more invasive cancer cells are often more compliant than less invasive cancer cells. This result may be in part to the ability for GPCCs to behave like activated stromal cells that stiffen in the tumor; we confirmed that GPCCs display similar adhesive behavior as activated stromal cells. To determine how mechanics correlates with cell migration, we used time-lapse nuclear tracking to measure cell motility. The average cell speed was higher for NCCs than for GPCCs; however, GPCCs moved longer distances over time because their motion was more directional. These findings highlight the unusual biophysical behavior of GPCCs. To develop pharmacologic tools that target GPCCs, it is imperative to understand their biophysical properties. 
    more » « less
  5. Abstract There is a need for new in vitro systems that enable pharmaceutical companies to collect more physiologically-relevant information on drug response in a low-cost and high-throughput manner. For this purpose, three-dimensional (3D) spheroidal models have been established as more effective than two-dimensional models. Current commercial techniques, however, rely heavily on self-aggregation of dissociated cells and are unable to replicate key features of the native tumor microenvironment, particularly due to a lack of control over extracellular matrix components and heterogeneity in shape, size, and aggregate forming tendencies. In this study, we overcome these challenges by coupling tissue engineering toolsets with microfluidics technologies to create engineered cancer microspheres. Specifically, we employ biosynthetic hydrogels composed of conjugated poly(ethylene glycol) (PEG) and fibrinogen protein (PEG-Fb) to create engineered breast and colorectal cancer tissue microspheres for 3D culture, tumorigenic characterization, and examination of potential for high-throughput screening (HTS). MCF7 and MDA-MB-231 cell lines were used to create breast cancer microspheres and the HT29 cell line and cells from a stage II patient-derived xenograft (PDX) were encapsulated to produce colorectal cancer (CRC) microspheres. Using our previously developed microfluidic system, highly uniform cancer microspheres (intra-batch coefficient of variation (CV) ≤ 5%, inter-batch CV < 2%) with high cell densities (>20×106 cells/ml) were produced rapidly, which is critical for use in drug testing. Encapsulated cells maintained high viability and displayed cell type-specific differences in morphology, proliferation, metabolic activity, ultrastructure, and overall microsphere size distribution and bulk stiffness. For PDX CRC microspheres, the percentage of human (70%) and CRC (30%) cells was maintained over time and similar to the original PDX tumor, and the mechanical stiffness also exhibited a similar order of magnitude (103 Pa) to the original tumor. The cancer microsphere system was shown to be compatible with an automated liquid handling system for administration of drug compounds; MDA-MB-231 microspheres were distributed in 384 well plates and treated with staurosporine (1 μM) and doxorubicin (10 μM). Expected responses were quantified using CellTiter-Glo® 3D, demonstrating initial applicability to HTS drug discovery. PDX CRC microspheres were treated with Fluorouracil (5FU) (10 to 500 μM) and displayed a decreasing trend in metabolic activity with increasing drug concentration. Providing a more physiologically relevant tumor microenvironment in a high-throughput and low-cost manner, the PF hydrogel-based cancer microspheres could potentially improve the translational success of drug candidates by providing more accurate in vitro prediction of in vivo drug efficacy. Citation Format: Elizabeth A. Lipke, Wen J. Seeto, Yuan Tian, Mohammadjafar Hashemi, Iman Hassani, Benjamin Anbiah, Nicole L. Habbit, Michael W. Greene, Dmitriy Minond, Shantanu Pradhan. Production of cancer tissue-engineered microspheres for high-throughput screening [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 175. 
    more » « less