skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultraviolet Hyperspectral Interferometric Microscopy
Abstract Ultraviolet (UV) spectroscopy is a powerful tool for quantitative (bio)chemical analysis, but its application to molecular imaging and microscopy has been limited. Here we introduce ultraviolet hyperspectral interferometric (UHI) microscopy, which leverages coherent detection of optical fields to overcome significant challenges associated with UV spectroscopy when applied to molecular imaging. We demonstrate that this method enables quantitative spectral analysis of important endogenous biomolecules with subcellular spatial resolution and sensitivity to nanometer-scaled structures for label-free molecular imaging of live cells.  more » « less
Award ID(s):
1752011
PAR ID:
10154081
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
8
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultraviolet (UV) microscopy has recently re-emerged as an important label-free, molecular imaging technique. This stems from the unique UV absorption properties of many endogenous biomolecules that play a critical role in cell structure and function. However, broadband hyperspectral imaging in this spectral region is challenging due to strong chromatic aberrations inherent in UV systems. Here we apply an intensity-based, two-stage, iterative phase-recovery algorithm that leverages the same chromatic aberrations to overcome this challenge. Importantly, knowledge of samples’ dispersion or absorption properties is not required. We demonstrate that the computationally retrieved phase can be applied to digitally refocus images across a large bandwidth. This enables hyperspectral UV imaging with a simple microscope for quantitative molecular analysis. We validate this method through simulations and through experiments with red blood cells. 
    more » « less
  2. Deep-ultraviolet (UV) microscopy enables label-free, high-resolution, quantitative molecular imaging and enables unique applications in biomedicine, including the potential for fast hematological analysis at the point-of-care. UV microscopy has been shown to quantify hemoglobin content and white blood cells (five-part differential), providing a simple alternative to the current gold standard, the hematological analyzer. Previously, however, the UV system comprised a bulky broadband laser-driven plasma light source along with a large and expensive camera and 3D translation stage. Here, we present a modified deep-UV microscope system with a compact footprint and low-cost components. We detail the novel design with simple, inexpensive optics and hardware to enable fast and accurate automated imaging. We characterize the system, including a modified low-cost web-camera and custom automated 3D translation stage, and demonstrate its ability to scan and capture large area images. We further demonstrate the capability of the system by imaging and analyzing blood smears, using previously trained networks for automatic segmentation, classification (including 5-part white blood cell differential), and colorization. The developed system is approximately 10 times less expensive than previous configurations and can serve as a point-of-care hematology analyzer, as well as be applied broadly in biomedicine as a simple compact, low-cost, quantitative molecular imaging system. 
    more » « less
  3. Objective and Impact Statement . We present a fully automated hematological analysis framework based on single-channel (single-wavelength), label-free deep-ultraviolet (UV) microscopy that serves as a fast, cost-effective alternative to conventional hematology analyzers. Introduction . Hematological analysis is essential for the diagnosis and monitoring of several diseases but requires complex systems operated by trained personnel, costly chemical reagents, and lengthy protocols. Label-free techniques eliminate the need for staining or additional preprocessing and can lead to faster analysis and a simpler workflow. In this work, we leverage the unique capabilities of deep-UV microscopy as a label-free, molecular imaging technique to develop a deep learning-based pipeline that enables virtual staining, segmentation, classification, and counting of white blood cells (WBCs) in single-channel images of peripheral blood smears. Methods . We train independent deep networks to virtually stain and segment grayscale images of smears. The segmented images are then used to train a classifier to yield a quantitative five-part WBC differential. Results. Our virtual staining scheme accurately recapitulates the appearance of cells under conventional Giemsa staining, the gold standard in hematology. The trained cellular and nuclear segmentation networks achieve high accuracy, and the classifier can achieve a quantitative five-part differential on unseen test data. Conclusion . This proposed automated hematology analysis framework could greatly simplify and improve current complete blood count and blood smear analysis and lead to the development of a simple, fast, and low-cost, point-of-care hematology analyzer. 
    more » « less
  4. Hematological analysis, via a complete blood count (CBC) and microscopy, is critical for screening, diagnosing, and monitoring blood conditions and diseases but requires complex equipment, multiple chemical reagents, laborious system calibration and procedures, and highly trained personnel for operation. Here we introduce a hematological assay based on label-free molecular imaging with deep-ultraviolet microscopy that can provide fast quantitative information of key hematological parameters to facilitate and improve hematological analysis. We demonstrate that this label-free approach yields 1) a quantitative five-part white blood cell differential, 2) quantitative red blood cell and hemoglobin characterization, 3) clear identification of platelets, and 4) detailed subcellular morphology. Analysis of tens of thousands of live cells is achieved in minutes without any sample preparation. Finally, we introduce a pseudocolorization scheme that accurately recapitulates the appearance of cells under conventional staining protocols for microscopic analysis of blood smears and bone marrow aspirates. Diagnostic efficacy is evaluated by a panel of hematologists performing a blind analysis of blood smears from healthy donors and thrombocytopenic and sickle cell disease patients. This work has significant implications toward simplifying and improving CBC and blood smear analysis, which is currently performed manually via bright-field microscopy, and toward the development of a low-cost, easy-to-use, and fast hematological analyzer as a point-of-care device and for low-resource settings. 
    more » « less
  5. To date, it has remained challenging to achieve N-polar AlN, which is of great importance for high power, high frequency, and high temperature electronics, acoustic resonators and filters, ultraviolet (UV) optoelectronics, and integrated photonics. Here, we performed a detailed study of the molecular beam epitaxy and characterization of N-polar AlN on C-face 4H-SiC substrates. The N-polar AlN films grown under optimized conditions exhibit an atomically smooth surface and strong excitonic emission in the deep UV with luminescence efficiency exceeding 50% at room temperature. Detailed scanning transmission electron microscopy (STEM) studies suggest that most dislocations are terminated/annihilated within ∼200 nm AlN grown directly on the SiC substrate due to the relatively small (1%) lattice mismatch between AlN and SiC. The strain distribution of AlN is further analyzed by STEM and micro-Raman spectroscopy, and its impact on the temperature-dependent deep UV emission is elucidated. 
    more » « less