Virtual water flows are used to map the indirect water consumption connections implied by the supply chain of a city, region, or country. This information can be used to manage supply chains to achieve environmental policy objectives and mitigate environmental risks to critical supply chains. A limitation of prior work is that these flows are typically analyzed using monolayer networks, which ignores crucial intersectoral or interlayer couplings. Here, we use a multilayer network to account for such couplings when analyzing blue virtual water flows in the United States. Our multilayer network consists of 115 different regions (nodes), covering the entire conterminous United States; 41 coupled economic sectors (layers); and ∼2 × 107possible links. To analyze the multilayer network, we focus on three fundamental network properties: topological connectivity, mesoscale structure, and node centrality. The network has a high connectivity, with each node being on average connected to roughly 2/3 of the network's nodes. Interlayer flows are a major driver of connectivity, representing ∼54% of all the network's connections. Five different groups of tightly connected nodes (communities) characterize the network. Each community represents a preferred spatial mode of long‐range virtual water interaction within the United States. We find that large (populous) cities have a stronger influence than small ones on network functioning because they attract and recirculate more virtual water through their supply chains. Our results also highlight differences between the multilayer and monolayer virtual water network, which overall show that the former provides a more realistic representation of virtual water flows.
Community detection is a commonly used technique for identifying groups in a network based on similarities in connectivity patterns. To facilitate community detection in large networks, we recast the network as a smaller network of ‘super nodes’, where each super node comprises one or more nodes of the original network. We can then use this super node representation as the input into standard community detection algorithms. To define the seeds, or centers, of our super nodes, we apply the ‘CoreHD’ ranking, a technique applied in network dismantling and decycling problems. We test our approach through the analysis of two common methods for community detection: modularity maximization with the Louvain algorithm and maximum likelihood optimization for fitting a stochastic block model. Our results highlight that applying community detection to the compressed network of super nodes is significantly faster while successfully producing partitions that are more aligned with the local network connectivity and more stable across multiple (stochastic) runs within and between community detection algorithms, yet still overlap well with the results obtained using the full network.
more » « less- PAR ID:
- 10154082
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
We consider the ad-hoc networks consisting of n wireless nodes that are located on the plane. Any two given nodes are called neighbors if they are located within a certain distance (communication range) from one another. A given node can be directly connected to any one of its neighbors, and picks its connections according to a unique topology control algorithm that is available at every node. Given that each node knows only the indices (unique identification numbers) of its one and two-hop neighbors, we identify an algorithm that preserves connectivity and can operate without the need of any synchronization among nodes. Moreover, the algorithm results in a sparse graph with at most 5n edges and a maximum node degree of 10. Existing algorithms with the same promises further require neighbor distance and/or direction information at each node. We also evaluate the performance of our algorithm for random networks. In this case, our algorithm provides an asymptotically connected network with n(1+o(1)) edges with a degree less than or equal to 6 for 1-o(1) fraction of the nodes. We also introduce another asynchronous connectivity-preserving algorithm that can provide an upper bound as well as a lower bound on node degrees.more » « less
-
Abstract In this paper, we consider data consisting of multiple networks, each composed of a different edge set on a common set of nodes. Many models have been proposed for the analysis of such
multiview network data under the assumption that the data views are closely related. In this paper, we provide tools for evaluating this assumption. In particular, we ask: given two networks that each follow a stochastic block model, is there an association between the latent community memberships of the nodes in the two networks? To answer this question, we extend the stochastic block model for a single network view to the two‐view setting, and develop a new hypothesis test for the null hypothesis that the latent community memberships in the two data views are independent. We apply our test to protein–protein interaction data from the HINT database. We find evidence of a weak association between the latent community memberships of proteins defined with respect to binary interaction data and the latent community memberships of proteins defined with respect to cocomplex association data. We also extend this proposal to the setting of a network with node covariates. The proposed methods extend readily to three or more network/multivariate data views. -
While significant efforts have been attempted in the design, control, and optimization of complex networks, most existing works assume the network structure is known or readily available. However, the network topology can be radically recast after an adversarial attack and may remain unknown for subsequent analysis. In this work, we propose a novel Bayesian sequential learning approach to reconstruct network connectivity adaptively: A sparse Spike and Slab prior is placed on connectivity for all edges, and the connectivity learned from reconstructed nodes will be used to select the next node and update the prior knowledge. Central to our approach is that most realistic networks are sparse, in that the connectivity degree of each node is much smaller compared to the number of nodes in the network. Sequential selection of the most informative nodes is realized via the between-node expected improvement. We corroborate this sequential Bayesian approach in connectivity recovery for a synthetic ultimatum game network and the IEEE-118 power grid system. Results indicate that only a fraction (∼50%) of the nodes need to be interrogated to reveal the network topology.more » « less
-
Graphs/Networks are common in real-world applications where data have rich content and complex relationships. The increasing popularity also motivates many network learning algorithms, such as community detection, clustering, classification, and embedding learning, etc.. In reality, the large network volumes often hider a direct use of learning algorithms to the graphs. As a result, it is desirable to have the flexibility to condense a network to an arbitrary size, with well-preserved network topology and node content information. In this paper, we propose a graph compression network (GEN) to achieve network compression and embedding at the same time. Our theme is to leverage the network topology to find node mappings, such that densely connected nodes, including their node content, are compressed as a new node, with a latent vector (i.e. embedding) being learned to represent the compressed node. In addition to compression learning, we also develop a novel encoding-decoding framework, using feature diffusion process, to "decompress" the condensed network. Different from traditional graph convolution which uses direct-neighbor message passing, our decompression advocates high-order message passing within compressed nodes to learning feature representation for all nodes in the network. A unique strength of GEN is that it leverages the graph neural network principle to learn mapping automatically, so one can compress a network to an arbitrary size, and also decompress it to the original node space with minimum information loss. Experiments and comparisons confirm that GEN can automatically find clusters and communities, and compress them as new nodes. Results also show that GEN achieves improved performance for numerous tasks, including graph classification and node clustering.more » « less